1	Summer 20 n is an integer greater than 1	17 Paper 1 Q16
1		
	Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.	
	(Total for Question 1 is 4 marks)
	(10th 101 Question 1 is 1 mains	·)

2	Prove that the square of an odd number is always 1 more than a multiple of 4	<u>Summer 2018 Paper 1 Q12</u>
_	(Total for Question 2 is	4 marks)

3	Summer 2019 Paper 1 Q13 Given that n can be any integer such that $n > 1$, prove that $n^2 - n$ is never an odd number.
_	(Total for Question 3 is 2 marks)

4	Autumn 2018 Paper 3 Q15 Prove algebraically that the difference between the squares of any two consecutive odd numbers is always a multiple of 8		
	(Total for Question 4 is 3 marks)		

5	Prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4
	(Total for Question 5 is 3 marks)

6	(a) Prove that	<u>Autumn</u>	2022 Paper 1 <u>Q</u> 16
		$(2m+1)^2 - (2n-1)^2 = 4(m+n)(m-n+1)$	
			(3)
	Sophia says that the resul odd numbers must be a m	t in part (a) shows that the difference of the squares of any two sultiple of 4	
	(b) Is Sophia correct?		
	You must give reason	s for your answer.	
			(1)
		(Total for Question 6 is 4 ma	
		(10001101 Question 0 15 1 100	

_	
7	Autumn 2017 Paper 1 Q17 n is an integer.
	Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.
	(Total for Question 7 is 2 marks)

8	Prove algebraically the circle with equation	at the straight line with equation $x^2 + y^2 = 20$	x - 2y = 10	Autumn 2017 Paper 3 Q19 is a tangent to the
			(Total for Qu	iestion 8 is 5 marks)