| Paper: 1MA | Paper: 1MA1/3H | | | | | | | |------------|----------------|--------|------|--|--|--|--| | Question | Working | Answer | Mark | Notes | | | | | 9 (a) | | 5 | M1 | evaluates $(0.85)^n$ or $12500 \times (0.85)^n$ for at least one value of n | | | | | | | | A1 | cao | | | | | (b) | | 2.4 | P1 | for a process to find the amount of interest before tax, eg $79.20 \div 0.6$ (= 132) | | | | | | | | P1 | for a process to find value of R, eg "132"÷5500×100 | | | | | | | | A1 | cao | | | | | Paper: 1MA | Paper: 1MA1/2H | | | | | | |------------|----------------|-------------------------|----------|---|--|--| | Question | Working | Answer | Mark | Notes | | | | 6 | | Secure Bank (supported) | P1 | for a process to work out the interest after one year e.g. 0.02 × 25000 (=500) or 0.043 × 25000 (=1075) or for 1.02 or 25500 or 1.043 or 26075 | | | | | | | P1
C1 | for process to find value of the investment after 3 years or the multiplicative factor for 3 years at one of the banks, e.g. $25000 \times 1.02 \times 1.02 \times 1.02$ oe (= 26530) or 1.02^3 (= 1.0612) or $25000 \times 1.043 \times 1.009 \times 1.009$ oe (= 26546) or $1.043 \times 1.009 \times 1.009$ (= 1.0618) [accept total interest of 1530 or 1546 if final values of investment are not found] for Secure Bank from correct figures, eg. 26530 and 26546 or 1530 and 1546 or 1.0612 and 1.0618 | | | | Paper 1MA1: 3H | | | | | | | | |----------------|---------|--------|----------------|---|--|--|--| | Question | Working | Answer | Mark | Notes | | | | | 10 | | 6 (%) | P1
P1
A1 | for y^5 oe or $8029.35 \div 6000$
for a process to find $1+x$ e.g. $\sqrt[5]{(8029.35 \div 6000)}$ or 1.06 or 1.0599 5.99 to 6 | | | | | Paper: 1MA1 | /3H | | | | |-------------|-------------------------------------|------|--|--| | Question | Answer | Mark | Mark scheme | Additional guidance | | 2 | 12272.70
12272.71 or
12272.72 | M1 | for evidence of using a correct first step eg 200000 × 0.015 (= 3000) or 200000 × 1.015 (= 203000) | | | | | M1 | for evidence of a compound interest method eg 203000×0.015 (= 3045) or 203000×1.015 (= 206045) or 206045×0.015 (= 3090.675) or 206045×1.015 (= 209135.675) or 209135.675×0.015 (= 3137.035) or 209135.675×1.015 (212272.710) or 200000×1.015^t , $t \ge 2$ | values may be rounded or truncated to 2 dp | | | | A1 | for 12272.7(0) or 12272.71 or 12272.72
SC B2 for 212272.7(0) or 212272.71 or 212272.72 | | ## $\verb|www.yesterdaysmathsexam.com||$ | Paper: 1MA1 | /2H | | | | |-------------|------------|------|---|--| | Question | Answer | Mark | Mark scheme | Additional guidance | | 10 | 344 580.48 | P1 | for a start to the process to find the initial investment eg $344\ 605 \div 1.025$ oe (= $336\ 200$) or for 1.025^3 (= 1.07689) | | | | | P1 | for complete process to find original investment, eg $344\ 605 \div 1.025^3$ oe (= 319 078 to 320 265) | | | | | P1 | for [initial investment] $\times 1.02^2 \times 1.035$ oe | [initial investment] must be clearly what they believe to be that and cannot be 344605 | | | | A1 | for answer in the range 343 587 to 344 581 | believe to be that and earlief be 344003 | | | | | | | ## ${\tt www.yesterdaysmathsexam.com}$ | Paper: 1MA1 | /2H | | | | |-------------|--------------------|------|--|---| | Question | Answer | Mark | Mark scheme | Additional guidance | | 4 (a) | Ben
(supported) | P1 | shows how to work interest out for one year eg $2000 \times 0.025 (= 50)$
or $1600 \times 0.035 (= 56)$ or 150 or 168
or $2000 \times 1.025 (= 2050)$ or $1600 \times 1.035 (= 1656)$ | Throughout accept figures ±1 pence which do not need to be presented in money notation (to 2dp) or with monetary symbols. | | | | P1 | shows compound interest calculation for one account eg $2050 \rightarrow 51.25$ or $2101.25 \rightarrow 52.53$ or $1656 \rightarrow 57.96$ or $1713.96 \rightarrow 59.99$ eg 2000×1.025^3 (= 2153.78) or 1600×1.035^3 (= 1773.95) | Award mark for a correct process shown, for which these figures can be taken as implying the process. | | | | P1 | shows complete compound interest calculation for both accounts eg 2000×1.025^3 (= 2153.78) and 1600×1.035^3 (= 1773.95) OR one interest stated correctly eg 153.78 or 173.95 | As above, award mark for both correct processes shown for both accounts, which these figures can be taken as implying the process. | | | | C1 | Ben (shares) supported by 153.78 and 173.95 | Accept an answer of "shares". | | 4 (b) | conclusion | C1 | conclusion (ft) eg no change, shares now 182.5 Acceptable examples no since shares/Ben now 182.5 Still Ben since 182.5 > Ali No; he only gets 8.57 more No; he gets 68.56 instead of 59.98 (3 rd yr) No; Ben already gets more interest, he would just get even more Not acceptable examples no shares now 182.5 Still Ben since less than Ali 182.5 > 153.78 no; he needs 20.17 more | Conclusion needs to be supported. ft is from part (a); calculations carried out as part of (b) need to be correct for the comparison to be valid. | ${\tt www.yesterdaysmathsexam.com}$ | Paper: 1MA | Paper: 1MA1/2H | | | | | | | | | |------------|----------------|------|--|--|--|--|--|--|--| | Question | Answer | Mark | Mark scheme | Additional guidance | | | | | | | 13 | 2.2 | P1 | works out interest for one year, eg 3550×0.026 (= 92.3(0))
or 3550×1.026 (=3642.3(0)) | | | | | | | | | | P1 | for compound interest calculation, eg 3550×1.026^2 (= 3736.9) or for an answer given as 0.0219 or 1.0219 | | | | | | | | | | A1 | answer in range 2.19 to 2.2 | If an answer in the range is seen in working and then incorrectly rounded award full marks | | | | | | | Paper: 1MA | Paper: 1MA1/2H | | | | | | | | |------------|----------------|------|---|------------------------|--|--|--|--| | Question | Answer | Mark | Mark scheme Additional guidance | | | | | | | 6 | 7318.15 | M1 | for a correct first step eg working out increase for one year $7000 \times (100 + 3) \div 100 \ (= 7210)$ oe or $7000 \times 3 \div 100 \ (= 210)$ oe or find the multiplier for both years eg $(100 + 3) \div 100 \times (100 + 1.5) \div 100 \ (= 1.04545)$ | 7315 or 315 implies M1 | | | | | | | | M1 | for a compound method, eg $7000 \times (100 + 3) \div 100 \times (100 + 1.5) \div 100$ oe or "7210" \times 1.5 \div 100 or (= 108.15) oe cao | 318.15 implies M1M1A0 | | | | | | Paper: 1MA | A1/2H | | | | |------------|---------|--------|----------|---| | Question | Working | Answer | Mark | Notes | | 13 (a) | | 58600 | M1 | for a complete method, eg 50000×1.02^8 (= $58582(.969)$) or for finding the increase in value of the company after 8 years, eg $8582(.969)$ or 8600 | | | | | A1 | cao | | (b) | | 4.5 | P1 | for a process to find multiplier for 6 year period, eg $325 \div 250$ oe (= 1.3) or $130(\%)$ or for $250000 \times y^6 = 325000$ | | | | | P1
A1 | for a process to find multiplier for one year, eg ("1.3") $\frac{1}{6}$ or 1.044or 1.045 4.4 – 4.5 |