Paper 1MA	Paper 1MA1: 1F						
Question	Working	Answer	Mark	Notes			
Q1		4 × 8 rectangle drawn	M1 A1	Draws a rectangle with side lengths in the ratio 2:1 or lists possible dimensions in the ratio 2:1 or gives two numbers which multiply to 32 for correct diagram on grid			

Paper: 1MA	Paper: 1MA1/1F					
Question	Working	Answer	Mark	Notes		
15		13.5	P1	process shown to find the area of the triangle e.g. $\frac{1}{2} \times 8 \times 9$ (=36)		
00			P1	for calculating $6 \times (area) (=216)$		
Q2			P1	for process shown of dividing their area of rectangle by 16 (oe)		
			A1	oe		

Paper: 1MA1	Paper: 1MA1/3F							
Question	Answer	Mark	Mark scheme	Additional guidance				
17 Q3	6	P1 P1 A1	for a process to set up an equation in x , eg $\frac{1}{2} \times 3x \times 3x = 162$ for a process to simplify to x^2 eg $x^2 = 162 \times 2 \div 9$ or $x^2 = 36$ cao	Must be a complete equation Can ft their equation if a quadratic				

Paper: 1MA1/3	Paper: 1MA1/3F							
Question	Answer	Mark	Mark scheme	Additional guidance				
14 (a)	Explanation	C1	for a correct explanation, eg that he has found the area not perimeter Acceptable examples He has found the area (not perimeter) He should have added The perimeter is 7+3+7+3 (=20) oe He did base×height He has timesed (not added)	Any incorrect statement as part of a correct response can be ignored unless it contradicts the statement, eg, he found area but perimeter equals 10				
Q4			Not acceptable examples He has worked it out wrong He should have squared it He should have done 14×6 or 7×3×7×3 or 7×3 twice then add them He didn't include the top or the other side He should have doubled it It should be P=7×3 or he has done the sum not found the answer					
(b)	Explanation	C1	for correct explanation, eg that you cannot have a length of -2 Acceptable examples x cannot be negative Cannot have a negative length Has to be positive It is impossible Can't have -2(cm) (as a measurement) It has to be more than 0 Not acceptable examples You can have -2 Won't add to 180 He has a minus sign and the other sides have add signs It has to be a whole number or decimal there are no negative numbers to get a negative answer there is no cm after his answer It should be +2	Any incorrect statement as part of a correct response can be ignored unless it contradicts the statement.				

www.yesterdaysmathsexam.com

Paper: 1MA1	Paper: 1MA1/2F								
Question	Answer	Mark	Mark scheme	Additional guidance					
13	10	P1	for starting the problem, $12 \div 6$ (=2)	The square of side 2 cm may be just seen on the diagram					
Q5		P1	for a complete process to find width "2" × 5						
		A1	cao						

Paper: 1MA1/	2F			
Question	Answer	Mark	Mark scheme	Additional guidance
15	3240	P1	for 90 × 60 (= 5400) OR 40 ÷ 100 × 90 (= 36) OR 40 ÷ 100 × 60 (= 24)	
		P1	for a process to work out area that is flowers eg. $40 \div 100 \times \text{``5400''} (= 2160)$ OR $\text{``36''} \times 60 (= 2160)$ OR $90 \times \text{``24''} (= 2160)$	
		P1	for a full process to find the area that is grass eg. "5400" – "2160" (=3240)	
		A1	cao	
Q6		P1	ALTERNATIVE for 100 – 40 (= 60)	
		P1	(indep) for 90 × 60 (=5400) OR 90 × 60 ÷ 100 (= 54) or 60 × 60 ÷ 100 (= 36)	
		P1	for a full process to find the area that is grass eg. "60" ÷ 100 × "5400" (=3240) OR "54" × 60 (= 3240) or "36" × 90 (= 3240)	
		A1	cao	

Paper: 1MA1/3F							
Question	Answer	Mark	Mark scheme	Additional guidance			
13 Q7	34	M1	for start to method, eg $10-4 (= 6)$ or $7-5 (= 2)$ or $10+7+4+5 (= 26)$ or $(10+7) \times 2$	6, 2 may be seen on diagram			
		A1	cao				

Paper: 1MA	Paper: 1MA1/3F								
Question	Answer	Mark	Mark scheme	Additional guidance					
16	Triangle drawn	B2	for an isosceles triangle drawn with the product of the base and perpendicular height	Accept triangle drawn in any					
			being 24, eg. 6×4 or 4×6 or 8×3 or 3×8	orientation or drawn freehand.					
Q8		(B1	for any isosceles triangle drawn or for any triangle with 24 as the product of the base and the perpendicular height)						

www.yesterdaysmathsexam.com

Paper: 1MA	Paper: 1MA1/3F						
Question	Working	Answer	Mark	Notes			
24		147	P1	starts process, eg uses x and $x + 7$			
			P1	starts to work with at least 6 correct sides, may be on the diagram or in an expression			
Q9			P1	(dep on previous P1) gives a correct expression for the perimeter, eg $x + x + 7 + x + 7 + x + 7 + x + 7 + x + 7 + x + 7$			
				or adds at least 6 correct sides and equates to 70			
			A1	for width $= 3.5$ oe and length $= 10.5$ oe			
			B1	ft (dep P2) for correct area for their x			

Paper: 1MA1	/2F					
Question	Answer	Mark	Mark scheme	Additional guidance		
13 (a)	36	P1	square root of 81 eg $\sqrt{81}$ or 9 or 9 × 4	9 could be seen on the diagram		
		A1	cao			
(b)	12	M1	finding area of triangle eg $\frac{1}{2}$ (16 × 9) (=72)			
Q10		M1	equating with area of parallelogram eg [area of triangle] \times 5 = 30 \times <i>h</i> or (<i>h</i> =) [area of triangle] \times 5 ÷ 30	[area of triangle] must be 72 or 144 or come from $\frac{1}{2}(16 \times 9)$ or 16×9		
			or $(h =)$ [area of triangle] $\div 30$ or sight of 2.4			
		A1	cao			

Paper: 1MA1	Paper: 1MA1/3F							
Question	Answer	Mark	Mark scheme	Additional guidance				
Q11	Triangle of area 18	M1	for a complete method to find area of trapezium eg $\frac{1}{2}(2+7) \times 4 (=18)$ OR for a triangle drawn of area 36 OR for a triangle that would give an area ft their area of trapezium	The value for the area of the trapezium must be clear for the ft to be checked.				
	A1 for a triangle drawn of area 18 eg base = 6, height = 6 or base = 9, height = 4			Accept use of dimensions that are not whole numbers as long as the intention is clear				

Paper: 1MA1	Paper: 1MA1/1F								
Question	Answer	Mark	Mark scheme	Additional guidance					
20	12.5	P1	starts to process the problem, eg assigns lengths of sides to squares A and B in the ratio 1 : 2 oe and calculates at least one area OR fits 4 of square A into square B OR for ratio of areas of squares eg 1 : 4 oe	May be seen in a diagram					
Q12		P1	for process to express relationship between area of shaded triangle and area of square B, eg 1: 8, $\frac{1}{8}$ OR 0.125	May be seen in a diagram with figure given					
		A1	for 12.5 oe						

Paper: 1MA1/1F					
Question	Answer	Mark	Mark scheme	Additional guidance	
28	8.5	P1	for process to use the area of <i>PQRS</i> to find the length of <i>PQ</i> , eg $10y = 45$ or $45 \div 10 (= 4.5)$	Sets up equation for area	
		P1	for process to use the perimeter of <i>ABCD</i> , eg $2x + 2 \times \text{``}4.5\text{''} = 26 \text{ or } 26 - 2 \times \text{``}4.5\text{''} (= 17) \text{ or } 26 \div 2 (= 13)$	Uses perimeter of ABCD	
Q13		P1	for process to use length of BC to find length of AB , eg solves $2x + 2 \times \text{``}4.5\text{''} = 26 \text{ or } (26 - 2 \times \text{``}4.5\text{''}) \div 2 \text{ or ``}13\text{''} - \text{``}4.5\text{''}$		
		A1	for 8.5 or $8\frac{1}{2}$	Accept $\frac{17}{2}$	

Paper: 1MA1/3F					
Question	Answer	Mark	Mark scheme	Additional guidance	
16	32	P1	for a process to work out the missing length eg $6-4$ (=2) or for a process to work out the length of the base eg $4+6$ (= 10) OR for finding total perimeter of 2 rectangles, eg $2(6+4+6+4)$ (= 40) OR for writing at least 5 figures correctly on the diagram	May be seen on the diagram	
Q14		P1	for a process to work out the perimeter eg $4 + "2" + 6 + 4 + 6 + 4 + 6$ or $20 + 20 - 2 \times 4$ or $16 + 14 + "2"$	May be seen in different forms	
		A1	cao SC B1 for 30		

Paper: 1MA1/2F					
Question	Answer	Mark	Mark scheme	Additional guidance	
21	186.15	P1	for correctly finding the area of at least three sections, eg 3 of $11 \times 7 = 77$, or $9 \times 7 = 63$, or $\frac{1}{2} \times 11 \times 9 = 49.5$, or $\frac{1}{4} \times \pi \times 7^2 = 38.4845$	Note a trapezium for the rectangle and triangle should be classed as two areas. Accept figures rounded or truncated to 1 dp or better throughout.	
Q15		P1	for a method to find the number of bags required for one area or a combination of areas eg "77" ÷ 14 (= 5.5) or "227.9845" ÷ 14 (= 16.2846)		
QIS		P1	for method to work out the total area for all four sections eg "77" + "63" + "49.5" + "38.4845" (= 227.9845) or adding the exact number of bags per section for all four sections eg "5.5" + "4.5" + "3.53" + "2.74" (= 16.28)	This mark is dependent upon correct processes seen for all four sections.	
		P1 A1	for method to find the cost, eg integer number of bags \times 10.95 cao	integer number of bags must come from area ÷ 14 rounded up	

Paper: 1MA1/2F					
Question	Answer	Mark	Mark scheme	Additional guidance	
24 (a)	19	P1	for process to find area available at festival B, eg 700×2000 (=1 400000)		
		P1	for finding the area available per person at one festival, eg 80 000 \div 425 (= 188.23) or [area] \div 6750 (= 207.40)	Accept either number rounded eg 207 or 188	
		P1	for finding the area available per person at both festivals, eg $80\ 000 \div 425$ (= 188.23) and [area] $\div 6750$ (= 207.40)	Accept both numbers rounded eg 207 and 188	
		A1	answer in the range 18.7 to 19.5		
(b)	explanation	C1	for a valid statement relating to scale factor for area, Acceptable examples		
Q16			there are 10000 (cm ²) in 1 (m ²)		
Q10			because 1 m ² is the same as $100 \times 100 = 10000 \text{ cm}^2$		
			there are 2 side lengths that change from 1 m to 100 cm		
			$300 \div 3$ is 100 should use 100^2		
			$300 \div 100 \div 100 = 0.03$		
			$3 \times 100 \times 100 = 30000$ Recovers it's area not length		
			Because it's area not length. Because it's in m ² not just metres		
			He hasn't taken the squared sign into account		
			Not acceptable examples		
			there are 1000 cm in 1 m		
			Callum is correct because		
			$300 \div 3 \text{ is } 100$		
			$3^2 = 9$		
			$300 \times 300 = 90000$		
			You have to square the number		

Paper: 1MA1/3F					
Question	Answer	Mark	Mark scheme	Additional guidance	
28	Complete chain of reasoning	M1	for (area of trapezium $TQRS = 0.5 \times 4x \times (2x + 3x)$ or for (area of rectangle $TUVS = 0.5 \times 4x \times (3x + 5) = 0.5 \times 4x \times (2x + 3x)$	Evidence for the award of marks may be seen on the diagram	
		M1	for (area of trapezium $QUVR = 4x(3x + 5) - 0.5 \times 4x \times (2x + 3x)$	Alternative methods may be seen.	
		C1	for correct algebraic processing and simplification to the given form		
Q17		M1	Alternative 1 for $(QU =) 3x + 5 - 2x (= x + 5)$		
Q17		M1	for (area of trapezium $QUVR = 0.5 \times 4x \times (("x + 5") + 5)$ or $0.5 \times 4x \times (x + 10)$		
		C1	for correct algebraic processing and simplification to the given form		
		M1	Alternative 2 for (area of triangle =) $0.5 \times (3x - 2x) \times 4x$ or for (area of rectangle =) $4x \times 5$	Accept x for $(3x - 2x)$	
		M1	for (area of trapezium $QUVR =$) "0.5 × (3x – 2x) × 4x" + "4x × 5"		
		C1	for correct algebraic processing and simplification to the given form		