www.yesterdaysmathsexam.com

Questi	on Scheme	Marks	AOs	
1	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$			
(a)	$g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$	M1	1.1b	
Way	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b	
		(2)		
(a) Way 2	$gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b	
	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b	
		(2)		
(b)	{Range:} $2 < y \le \frac{15}{2}$	B1	1.1b	
		(1)		
(c) Way 1	$y = \frac{2x+5}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$	M1	1.1b	
	$x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2} \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$	M1	2.1	
	$g^{-1}(x) = \frac{3x+5}{x-2}, 2 < x \le \frac{15}{2}$	Alft	2.5	
		(3)		
(c) Way 2	$y = \frac{2x - 6 + 11}{x - 3} \implies y = 2 + \frac{11}{x - 3} \implies y - 2 = \frac{11}{x - 3}$	M1	1.1b	
	$x-3 = \frac{11}{y-2} \Rightarrow x = \frac{11}{y-2} + 3 \left\{ \text{or } y = \frac{11}{x-2} + 3 \right\}$	M1	2.1	
	$g^{-1}(x) = \frac{11}{x-2} + 3, 2 < x \le \frac{15}{2}$	Alft	2.5	
		(3)		
	Notes for Question 1	(6	marks)	
(a)				
M1:	Full method of attempting $g(5)$ and substituting the result into g			
Note:	Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$, o.e. Note that $gg(x) = \frac{9x-5}{14-x}$			
A1:	Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4 or an exact equivalent			
Note:	Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4			

Question	Scheme	Marks	AOs
1	Attempts $f(-3) = 3 \times (-3)^3 + 2a \times (-3)^2 - 4 \times -3 + 5a = 0$	M1	3.1a
	Solves linear equation $23a = 69 \Longrightarrow a =$	M1	1.1b
	a=3 cso	A1	1.1b
		(3)	
			(3 marks)

M1: Chooses a suitable method to set up a correct equation in *a* which may be unsimplified.

This is mainly applying f(-3) = 0 leading to a correct equation in *a*.

Missing brackets may be recovered.

Other methods may be seen but they are more demanding

If division is attempted must produce a correct equation in a similar way to the f(-3) = 0 method

$$3x^{2} + (2a-9)x + 23 - 6a$$

$$x+3\overline{\smash{\big)}3x^{3} + 2ax^{2} - 4x + 5a}$$

$$\underline{3x^{3} + 9x^{2}}$$

$$(2a-9)x^{2} - 4x$$

$$(\underline{2a-9})x^{2} + (6a-27)x$$

$$(23-6a)x + 5a$$

$$(23-6a)x + 69 - 18a$$

So accept 5a = 69 - 18a or equivalent, where it implies that the remainder will be 0 You may also see variations on the table below. In this method the terms in x are equated to -4

	$3x^2$	(2a-9)x	$\frac{5a}{3}$	
x	$3x^3$	$(2a-9)x^2$	$\frac{5a}{3}x$	5a 5a
3	$9x^2$	(6a-27)x	5a	$6a - 27 + \frac{3}{3} = -4$

M1: This is scored for an attempt at solving a linear equation in *a*.

For the main scheme it is dependent upon having attempted $f(\pm 3) = 0$. Allow for a linear equation in *a* leading to $a = \dots$. Don't be too concerned with the mechanics of this.

 $\frac{3x^2...}{3x^3 + 2ax^2 - 4x + 5a}$ followed by a remainder in *a* set = 0 \Rightarrow *a* = ... or two terms in *a* are equated so that the remainder = 0 FYI the correct remainder via division is 23a + 12 - 81 oe a = 3 cso

A1: $a = 3 \cos \theta$

An answer of 3 with no incorrect working can be awarded 3 marks

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
5 (a)	$2x^{2} + 4x + 9 = 2(x \pm k)^{2} \pm \dots \qquad a = 2$	B1	1.1b
	Full method $2x^2 + 4x + 9 = 2(x+1)^2 \pm$ $a = 2 \& b = 1$	M1	1.1b
	$2x^{2} + 4x + 9 = 2(x+1)^{2} + 7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but not through (0.0)	B1	1.2
	y - intercept at $(0,9)$	B1	1.1b
	$\frac{1}{x}$ Minimum at $(-1,7)$	B1ft	2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	A1	2.2a
	(ii) $h(x) = \frac{21}{"2(x+1)^2 + 7"} \implies (\text{maximum}) \text{ value } \frac{21}{"7"} (=3)$	M1	3.1a
	$0 < h(x) \leq 3$	A1ft	1.1b
		(4)	
	1	(10 marks)

(a)

B1: Achieves
$$2x^2 + 4x + 9 = 2(x \pm k)^2 \pm ...$$
 or states that $a = 2$

M1: Deals correctly with first two terms of $2x^2 + 4x + 9$.

Scored for $2x^2 + 4x + 9 = 2(x+1)^2 \pm \dots$ or stating that a = 2 and b = 1

A1:
$$2x^2 + 4x + 9 = 2(x+1)^2 + 7$$

Note that this may be done in a variety of ways including equating $2x^2 + 4x + 9$ with the expanded form of $a(x+b)^2 + c \equiv ax^2 + 2abx + ab^2 + c$

Questi	on	Scheme	Marks	AOs
6 (a)		$gg(0) = g((0-2)^2+1) = g(5) = 4(5) - 7 = 13$	M1	2.1
			(2)	1.10
(b)		Solves either $(x-2)^2 + 1 = 28 \implies x =$ or $4x - 7 = 28 \implies x =$	M1	1.1b
		At least one critical value $x = 2 - 3\sqrt{3}$ or $x = \frac{35}{4}$ is correct	Al	1.1b
		Solves both $(x-2)^2 + 1 = 28 \implies x = \dots$ and $4x - 7 = 28 \implies x = \dots$	M1	1.1b
		Correct final answer of $x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$,	A1	2.1
		Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2	(4)	
		in place of $2-3\sqrt{3}$ is accepted for any of the A marks		
(c)		<u>h is a one-one</u> {function (or mapping) so has an inverse} <u>g is a many-one</u> {function (or mapping) so does not have an inverse}	B1	2.4
			(1)	
(d) Way 1	l	$\left\{\mathbf{h}^{-1}(x) = -\frac{1}{2} \Longrightarrow\right\} x = \mathbf{h}\left(-\frac{1}{2}\right)$	M1 B1 on epen	1.1b
		$x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$	M1	1.1b
		$\Rightarrow x = 7.25$ only cso	A1	2.2a
			(3)	
(d)		{their $h^{-1}(x)$ } = $\pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b
Way 2	2	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \implies \pm \sqrt{x \pm 1} =$	M1	1.1b
		$\Rightarrow x = 7.25$ only cso	Al	2.2a
			(3)) marks)
		Notes for Ouestion 6	(1)	<u>o marksj</u>
(a)				
M1:	Use	is a complete method to find $gg(0)$. E.g.		
		• Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant of the rel	ant part of	g(x)
		• Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$		
A1:	gg((0) = 13		
(b)				
M1:	See	scheme		
A1:	See scheme			
MI:	See scheme			
A1: Note:	Brings all the strands of the problem together to give a correct solution.			
Note:	If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for			ired for
Nato	the w	relevant method mark to be given. $f(x, y) = \frac{1}{29} + \frac{1}{29}$		4 - 6
INOTE:	wri eacl	tung $(x-2) + 1 = 28 \implies (x-2) + 1 = \sqrt{28} \implies x = -1 + \sqrt{28}$ (i.e. taking the h term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable meth	e square-roo od)	ot ot
Note:	Alle	ow set notation. E.g. $\{x \in \mathbb{R} : x < 2 - 3\sqrt{3} \cup x > 8.75\}$ is fine for the final	l A mark	

Question	Scheme	Marks	AOs
4 (a)	Either attempts $\frac{3x-7}{x-2} = 7 \implies x =$ Or attempts $f^{-1}(x)$ and substitutes in $x = 7$	M1	3.1a
	$\frac{7}{4}$ oe	A1	1.1b
		(2)	
(b)	Attempts $\text{ff}(x) = \frac{3 \times \left(\frac{3x-7}{x-2}\right) - 7}{\left(\frac{3x-7}{x-2}\right) - 2} = \frac{3 \times (3x-7) - 7(x-2)}{3x-7-2(x-2)}$	M1, dM1	1.1b 1.1b
	$=\frac{2x-7}{x-3}$	A1	2.1
		(3)	
		((5 marks)
Notes:			

M1: For either attempting to solve $\frac{3x-7}{x-2} = 7$. Look for an attempt to multiply by the (x-2) leading to a value for *x*.

Or score for substituting in x = 7 in $f^{-1}(x)$. FYI $f^{-1}(x) = \frac{2x-7}{x-3}$

The method for finding $f^{-1}(x)$ should be sound, but you can condone slips.

A1:
$$\frac{7}{4}$$

M1: For an attempt at fully substituting $\frac{3x-7}{x-2}$ into f(x). Condone slips but the expression must

have a correct form. E.g.
$$\frac{3 \times \left(\frac{*-*}{*-*}\right) - a}{\left(\frac{*-*}{*-*}\right) - b}$$
 where *a* and *b* are positive constants.

dM1: Attempts to multiply **all** terms on the numerator and denominator by (x-2) to create a fraction $\frac{P(x)}{Q(x)}$ where both P(x) and Q(x) are linear expressions. Condone $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$

A1: Reaches $\frac{2x-7}{x-3}$ via careful and accurate work. Implied by a = 2, b = -7 following correct work. Methods involving $\frac{3x-7}{x-2} = a + \frac{b}{x-2}$ may be seen. The scheme can be applied in a similar way

$$FYI \quad \frac{3x-7}{x-2} \equiv 3 - \frac{1}{x-2}$$

Question	Scheme	Marks	AOs
7	Attempts equation of line Eg Substitutes $(-2,13)$ into $y = mx + 25$ and finds m	M1	1.1b
	Equation of <i>l</i> is $y = 6x + 25$	A1	1.1b
	Attempts equation of <i>C</i> Eg Attempts to use the intercept $(0,25)$ within the equation $y = a(x\pm 2)^2 + 13$, in order to find <i>a</i>	M1	3.1a
	Equation of C is $y = 3(x+2)^2 + 13$ or $y = 3x^2 + 12x + 25$	A1	1.1b
	Region <i>R</i> is defined by $3(x+2)^2 + 13 < y < 6x + 25$ o.e.	B1ft	2.5
		(5)	
			(5 marks)
Notes.			

Notes:

The first two marks are awarded for finding the equation of the line

M1: Uses the information in an attempt to find an equation for the line *l*.

E.g. Attempt using two points: Finds $m = \pm \frac{25-13}{2}$ and uses of one of the points in their y = mx + c or equivalent to find *c*. Alternatively uses the intercept as shown in main scheme.

A1: y = 6x + 25 seen or implied. This alone scores the first two marks. Do not accept l = 6x + 25It must be in the form y = ... but the correct equation can be implied from an inequality. E.g. < y < 6x + 25

The next two marks are awarded for finding the equation of the curve

- M1: A complete method to find the constant *a* in $y = a(x\pm 2)^2 + 13$ or the constants *a*, *b* in $y = ax^2 + bx + 25$. An alternative to the main scheme is deducing equation is of the form $y = ax^2 + bx + 25$ and setting and solving a pair of simultaneous equations in *a* and *b* using the point (-2, 13) the gradient being 0 at x = -2. Condone slips. Implied by $C = 3x^2 + 12x + 25$ or $3x^2 + 12x + 25$ FYI the correct equations are 13 = 4a - 2b + 25(2a - b = -6) and -4a + b = 0
- A1: $y = 3(x+2)^2 + 13$ or equivalent such as $y = 3x^2 + 12x + 25$, $f(x) = 3(x+2)^2 + 13$. Do not accept $C = 3x^2 + 12x + 25$ or just $3x^2 + 12x + 25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3x^2 + 12x + 25 \, dx$
- **B1ft:** Fully defines the region *R*. Follow through on their equations for *l* and *C*.

Allow strict or non -strict inequalities as long as they are used consistently.

E.g. Allow for example " $3(x+2)^2 + 13 < y < 6x + 25$ " " $3(x+2)^2 + 13 \le y \le 6x + 25$ "

Allow the inequalities to be given separately, e.g. y < 6x + 25, $y > 3(x + 2)^2 + 13$. Set notation may be used so

 $\{(x, y): y > 3(x+2)^2 + 13\} \cap \{(x, y): y < 6x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$

Incorrect examples include "y < 6x + 25 or $y > 3(x+2)^2 + 13$ ", $\{(x, y): y > 3(x+2)^2 + 13\} \cup \{(x, y): y < 6x + 25\}$

Values of x could be included but they must be correct. So $3(x+2)^2+13 < y < 6x+25$, x < 0 is fine If there are multiple solutions mark the final one.

Quest	ion Scheme	Marks	AOs
4 (a	$gf(x) = 3\ln e^x$	M1	1.1b
	$=3x, (x \in \mathbb{R})$	A1	1.1b
		(2)	
(b)	$gf(x) = fg(x) \Longrightarrow 3x = x^3$	M1	1.1b
	$\Rightarrow x^3 - 3x = 0 \Rightarrow x =$	M1	1.1b
	$\Rightarrow x = (+)\sqrt{3}$ only as $\ln x$ is not defined at $x = 0$ and $-\sqrt{3}$	M1	2.2a
		(3)	
		(5 n	narks)
Notes	:		
(a) M1·	For applying the functions in the correct order		
A1:	The simplest form is required so it must be 3x and not left in the form 31	n e ^x	
	An answer of $3x$ with no working would score both marks	ii c	
(b)			
M1:	Allow the candidates to score this mark if they have $e^{3\ln x} = \text{their } 3x$		
M1:	For solving their cubic in x and obtaining at least one solution.		

A1:	For either stating that $x = \sqrt{3}$ only as $\ln x$ (or $3 \ln x$) is not defined at $x = 0$ and $-\sqrt{3}$
	or stating that $3x = x^3$ would have three answers, one positive one negative and one zero but $\ln x (\operatorname{or} 3 \ln x)$ is not defined for $x \leq 0$ so therefore there is only one (real) answer.
	Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)

Question Number	Schem	e	Marks
7. (a)	Method 1	Method 2	
	$y = \frac{3x-5}{x+1}$	$y = 3 - \frac{8}{x+1}$	
	$y(x+1) = 3x - 5 \Longrightarrow xy + y = 3x - 5$	$\frac{8}{x+1} = 3 - y$ so $x+1 = \frac{8}{3-y}$	M1
	$y + 5 = 3x - xy \implies y + 5 = x(3 - y)$ $\implies y + 5 = x$	$x = \frac{8}{2} - 1$	M1
	$\rightarrow \frac{1}{3-y} - x$	3- <i>y</i>	
	Hence $(f^{-1}(x)) = \frac{x+5}{3-x}$ $(x \in \Box, x \neq 3)$	Hence $(f^{-1}(x)) = \frac{8}{3-x} - 1$ $(x \in \Box, x \neq 3)$	A1 oe
			[3]
(b)	$\mathrm{ff}(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) - 5}$	$ff(x) = 3 - \frac{8}{3 - \frac{8}{x+1} + 1}$	M1 A1
	$\left(\frac{3x-5}{x+1}\right)+1$		
	$=\frac{\frac{3(3x-5)-5(x+1)}{x+1}}{\frac{(3x-5)+(x+1)}{2}}$	$ff(x) = 3 - \frac{8(x+1)}{4x-4}$	M1
	x + 1		
	$=\frac{9x-15-5x-5}{3x-5+x+1}=\frac{4x-20}{4x-4}$		
	$=\frac{x-5}{x-1} (\text{note that } a = -5.)$	$=\frac{x-5}{x-1}$	A1
			[4]
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2) - "5"}{-2+1}; = 11 \text{ or su}$	ubstitute 2 into $fg(x) = \frac{3(x^2 - 3x) - 5}{x^2 - 3x + 1}$;= 11	M1; A1
			[2]
(u)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{\min} = -2$	2.25	MI
	Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5)$	y = 25 - 15 = 10	BI
	$\frac{-2.23 \leqslant g(x) \leqslant 10}{2.23 \leqslant y \leqslant 10} 01 \frac{-2.23 \leqslant y \leqslant 10}{2.23 \leqslant y \leqslant 10}$		AI [2]
			12

Qu	Scheme	Marks
4.(a)	$0 < f(x) < \frac{4}{5}$	M1A1 (2)
(b)	$y = \frac{4}{3x+5} \qquad \Longrightarrow (3x+5)y = 4$	M1
	$\Rightarrow x = \frac{4 - 5y}{3y}$	dM1
	$f^{-1}(x) = \frac{4-5x}{3x} \qquad \left(0 < x < \frac{4}{5}\right)$	A10.e.
		(3)
(c)	$fg(x) = \frac{4}{\frac{3}{x} + 5}$	B1 (1)
	3x + 5 - 4	
(d)	$\frac{1}{4} = \frac{3}{3+5}$	M1
	$x = 15x^2 + 18x + 15 = 0$	A1
	Uses $18^2 < 4 \times 15 \times 15$ and so deduce no real roots	M1 A1
		(4) (10 marks)

M1: One limit such as y > 0 or y < 0.8. Condone for this mark both limits but with x (not y) or with the boundary included. For example $[0,0.8], 0 < x < 0.8, 0 \le y \le 0.8$

A1: Fully correct so accept $0 < f(x) < \frac{4}{5}$ and exact equivalents $0 < y < \frac{4}{5}$ (0,0.8)

(b)

M1: Set y = f(x) or x = f(y) and multiply both sides by denominator.

dM1:Make x (or a swapped y) the subject of the formula. Condone arithmetic slips

A1: o.e for example $y/f^{-1}(x) = \frac{1}{3}\left(\frac{4}{x}-5\right)$ or $y = \frac{\left(\frac{4}{x}-5\right)}{3}$ - do not need domain for this mark. ISW after a

correct answer.

(c) Mark parts c and d together

B1: $fg(x) = \frac{4}{\frac{3}{x} + 5}$ - allow any correct form then isw

(d)

M1: Sets fg(x) = gf(x) with both sides correct (but may be unsimplified) and forms a quadratic in x. Do not withhold this mark if fg or gf was originally correct but was "simplified" incorrectly and set equal to a correct gf A1: Correct 3TQ. It need not be all on one side of the equation. The =0 can be implied by later work
M1: Attempts the discriminant or attempts the formula or attempts to complete the square.

A1: Completely correct work (cso) and conclusion. If $b^2 - 4ac$ has been found it must be correct (-576)

Question Number	Scheme	Marks
3 (a)	0 < g < 3	M1A1
		(2)
(b)	$y = \frac{6x}{2x+3} \Longrightarrow 2xy+3y = 6x \Longrightarrow (6-2y)x = 3y \Longrightarrow x = \frac{3y}{(6-2y)}$	M1A1
	$\Rightarrow g^{-1}(x) = \frac{3x}{(6-2x)} \qquad 0 < x < 3$	A1ft
		(3)
(c)	$gg(x) = g\left(\frac{6x}{2x+3}\right) = \frac{6 \times \frac{6x}{2x+3}}{2 \times \frac{6x}{2x+3}+3}$	M1
	$=\frac{6\times 6x}{2\times 6x+3(2x+3)}$	dM1
	$=\frac{36x}{18x+9}=\frac{4x}{2x+1}$	A1
		(3)
		(8 marks)

M1: For one 'end' fully correct g(x) > 0 (not x > 0) or g(x) < 3 (not x < 3) or both ends (incorrect) eg. accept $0 \le g \le 3$. Accept incorrect notation such as 0 < x < 3 for this mark but not x > 0 or x < 3 on their own. Allow use of f rather than g for the M mark but not the A mark.

A1: Accept 0 < g < 3, 0 < y < 3, g(x) > 0 and g(x) < 3, (0,3)

(b)

M1: An attempt to make x or a replaced y the subject of the formula. The minimum expectation is that there is an attempt to cross multiply, expand and collect/factorise terms in x or a replaced y and

obtain $x = \frac{\pm 3y}{(\pm 6 \pm 2y)}$ or equivalent i.e. sign errors only on their algebra.

A1:
$$x = \frac{3y}{(6-2y)}$$
 or $\frac{-3y}{(2y-6)}$ or $y = \frac{3x}{(6-2x)}$ or $\frac{-3x}{(2x-6)}$ or $-\frac{3}{2} - \frac{9}{2(x-3)}$ etc. Allow $2(x-3)$ for $(2x-6)$.

A1ft: $g^{-1}(x) = \frac{3x}{(6-2x)} \left(\text{or } \frac{-3x}{(2x-6)} \right)$ and 0 < x < 3. You can follow through on any range from part (a) but

the domain must be in terms of x not in terms of e.g. g(x) or $g^{-1}(x)$. Do not allow $x \in \mathbb{R}$

Accept
$$y = \frac{3x}{(6-2x)} \left(\operatorname{or} \frac{-3x}{(2x-6)} \right)$$
 $0 < x < 3$. Allow $2(x-3)$ for $(2x-6)$.

(c)

M1: Attempts to find gg(x) by finding $g\left(\frac{6x}{2x+3}\right)$

dM1: Correct processing to obtain a single fraction of the form $\frac{a}{b}$. Achieved by,

• multiplying both numerator and denominator by (2x+3) (must multiply both terms in the denominator)

Question Number	Scheme	Marks
3.(a)	<i>y</i> 3	B1
		(1)
(b)	$y=3+\sqrt{x+2} \Rightarrow y-3=\sqrt{x+2} \Rightarrow x=(y-3)^2-2$	M1 A1
	\Rightarrow g ⁻¹ (x) = (x-3) ² -2, with x3	A1
		(3)
(c)	$g(x) = x \Longrightarrow 3 + \sqrt{x+2} = x$	
	$\Rightarrow x+2 = (x-3)^2 \Rightarrow x^2 - 7x + 7 = 0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	M1, A1
		(4)
(d)	$a = \frac{7 + \sqrt{21}}{2}$	B1 ft
		(1)
		9 marks
(c) Alt	Solves $g^{-1}(x) = x \Longrightarrow (x-3)^2 - 2 = x$	
	$\Rightarrow x^2 - 7x + 7 = 0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	dM1, A1
		(4)

- B1 States the correct range for g Accept g(x) ... 33g... 3, Range... $3, [3, \infty)$ Range is greater than or equal to 3 Condone f... 3 Do not accept $g(x) > 3, x ... 3, (3, \infty)$
- (b)

A1 Achieves $x = (y-3)^2 - 2$ or if swapped $y = (x-3)^2 - 2$ or equivalent such as $x = y^2 - 6y + 7$

A1 Requires a correct function in x + correct domain or a correct function in x with a correct follow through on the range in (a) but do not follow through on $x \in \mathbb{R}$

M1 Attempts to make x or a swapped y the subject of the formula. The minimum expectation is that the 3 is moved over followed by an attempt to square both sides. Condone for this mark $\sqrt{x+2} = y \pm 3 \Rightarrow x+2 = y^2 \pm 9$

Question	Scl	heme	Marks
1(a)	$fg(x) = \frac{28}{x-2} - 1$ Sets $fg(x) = x \Rightarrow \frac{28}{x-2} - 1 = x$ $\Rightarrow 28 = (x+1)(x-2)$	$\left(=\frac{30-x}{x-2}\right)$	M1
	$\Rightarrow x^2 - x - 30 = 0$		M1
(b)	$\Rightarrow (x-6)(x+5) = 0$ $\Rightarrow x = 6, x = -5$ $a = 6$		dM1 A1 (4) B1 ft
			(1) 5 marks
Alt 1(a)	$fg(x) = x \Rightarrow g(x) = f^{-1}(x)$ $\frac{4}{x-2} = \frac{x+1}{7}$ $\Rightarrow x^2 - x - 30 = 0$ $\Rightarrow (x-6)(x+5) = 0$ $\Rightarrow x = 6, x = -5$		M1 M1 dM1 A1 4 marks
S. Case	Uses $gf(x)$ instead $fg(x)$	Makes an error on $fg(x)$ 7×4	
	$\frac{4}{7x - 1 - 2} = x$	Sets $fg(x) = x \Rightarrow \frac{7 \times 4}{7 \times (x-2)} - 1 = x$	M0
	$\Rightarrow 7x^2 - 3x - 4 = 0$ $\Rightarrow (7x + 4)(x - 1) = 0$	$\Rightarrow x^2 - x - 6 = 0$ $\Rightarrow (x+2)(x-3) = 0$	M1
	$\Rightarrow x = -\frac{4}{7}, x = 1$	$\Rightarrow x = -2, x = 3$	dM1 A0
	,	· · ·	2 out of 4 marks

M1 Sets or implies that
$$fg(x) = \frac{28}{x-2} - 1$$
 Eg accept $fg(x) = 7\left(\frac{4}{x-2}\right) - 1$ followed by $fg(x) = \frac{7 \times 4}{x-2} - 1$
Alternatively sets $g(x) = f^{-1}(x)$ where $f^{-1}(x) = \frac{x \pm 1}{7}$
Note that $fg(x) = 7\left(\frac{4}{x-2}\right) - 1 = \frac{28}{x-2} - 1$ is M0

Note that
$$fg(x) = 7\left(\frac{4}{x-2}\right) - 1 = \frac{28}{7(x-2)} - 1$$
 is M0

- M1 Sets up a 3TQ (= 0) from an attempt at fg(x) = x or $g(x) = f^{-1}(x)$
- dM1 Method of solving 3TQ (= 0) to find at least one value for x. See "General Priciples for Core Mathematics" on page 3 for the award of the mark for solving quadratic equations This is dependent upon the previous M. You may just see the answers following the 3TQ.
- A1 Both x = 6 and x = -5
- (b)
- B1ft For a = 6 but you may follow through on the largest solution from part (a) provided more than one answer was found in (a). Accept 6, a = 6 and even x = 6Do not award marks for part (a) for work in part (b).

Question Number	Scheme	Marks	
7.(a)	Applies $vu'+uv'$ to $(x^2-x^3)e^{-2x}$		
	g'(x) = $(x^2 - x^3) \times -2e^{-2x} + (2x - 3x^2) \times e^{-2x}$	M1 A1	
	$g'(x) = (2x^3 - 5x^2 + 2x)e^{-2x}$	A1	
			(3)
(b)	Sets $(2x^3 - 5x^2 + 2x)e^{-2x} = 0 \Longrightarrow 2x^3 - 5x^2 + 2x = 0$	M1	
	$x\left(2x^2-5x+2\right)=0 \Longrightarrow x=(0),\frac{1}{2},2$	M1,A1	
	Sub $x = \frac{1}{2}$, 2 into $g(x) = (x^2 - x^3)e^{-2x} \Longrightarrow g(\frac{1}{2}) = \frac{1}{8e}$, $g(2) = -\frac{4}{e^4}$	dM1,A1	
	Range $-\frac{4}{e^4} \leqslant g(x) \leqslant \frac{1}{8e}$	A1	(6)
(c)	Accept $g(x)$ is NOT a ONE to ONE function		
	Accept $g(x)$ is a MANY to ONE function	B1	
	Accept $g^{-1}(x)$ would be ONE to MANY		(1)
		(10 mar	·ks)

Note that parts (a) and (b) can be scored together. Eg accept work in part (b) for part (a) (a)

M1 Uses the product rule vu'+uv' with $u = x^2 - x^3$ and $v = e^{-2x}$ or vice versa. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = ..followed by their <math>vu'+uv'. If the rule is not quoted nor implied only accept expressions of the form $(x^2 - x^3) \times \pm Ae^{-2x} + (Bx \pm Cx^2) \times e^{-2x}$ condoning bracketing issues

Method 2: multiplies out and **uses the product rule** on each term of $x^2e^{-2x} - x^3e^{-2x}$ Condone issues in the signs of the last two terms for the method mark Uses the product rule for uvw = u'vw + uv'w + uvw' applied as in method 1

Method 3:Uses **the quotient rule** with $u = x^2 - x^3$ and $v = e^{2x}$. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = .. followed by their $\frac{vu'-uv'}{v^2}$ If the rule is not quoted nor implied accept expressions of the form $\frac{e^{2x}(Ax-Bx^2)-(x^2-x^3)\times Ce^{2x}}{(e^{2x})^2}$

condoning missing brackets on the numerator and e^{2x^2} on the denominator.

Method 4: Apply implicit differentiation to $ye^{2x} = x^2 - x^3 \Rightarrow e^{2x} \times \frac{dy}{dx} + y \times 2e^{2x} = 2x - 3x^2$ Condone errors on coefficients and signs

Question Number	Scheme	Marks
6.(a)	$f(x) > k^2$	B1
(b)	$y = e^{2x} + k^2 \Longrightarrow e^{2x} = y - k^2$	(1) M1
	$\Rightarrow x = \frac{1}{2}\ln(y - k^2)$	dM1
	$\Rightarrow f^{-1}(x) = \frac{1}{2} \ln(x - k^2), x > k^2$	A1
(c)	$\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$	(3) M1
	$\Rightarrow \ln 8x^6 = 6$	M1
	$\Rightarrow 8x^\circ = e^\circ \Rightarrow x = \dots$	IVI I
	$\Rightarrow x = \left(\frac{c}{\sqrt[6]{8}}\right) = \frac{c}{\sqrt{2}} \text{(Ignore any reference to } -\frac{c}{\sqrt{2}}\text{)}$	A1
		(4)
(d)	$fg(x) = e^{2 \times \ln(2x)} + k^2$	M1
	$\Rightarrow fg(x) = (2x)^2 + k^2 = 4x^2 + k^2$	A1 (2)
(e)	$fg(x) = 2k^2 \Longrightarrow 4x^2 + k^2 = 2k^2$	(2)
	$\Rightarrow 4x^2 = k^2 \Rightarrow x = \dots$	M1
	$\Rightarrow x = \frac{k}{2}$ only	A1
		(2)
(alt c)	$\ln 2r + \ln 2r^2 + \ln 2r^3 = 6$	M1
, ,	$\Rightarrow \ln 2 + \ln x + \ln 2 + 2 \ln x + \ln 2 + 3 \ln x = 6$	
	$\Rightarrow 3 \ln 2 + 6 \ln x = 6$	
	$\Rightarrow \ln x = 1 - \frac{1}{2} \ln 2$	M1
	$\Rightarrow x = e^{1 - \frac{1}{2} \ln 2}, = \frac{e}{\sqrt{2}}$ (Ignore any reference to $-\frac{e}{\sqrt{2}}$)	M1, A1
(alt e)		(4)
	$\Rightarrow 2\ln(2x) = \ln(2k^2 - k^2)$	
	$\Rightarrow \ln(2x)^2 = \ln(k^2), \Rightarrow 4x^2 = k^2 \Rightarrow x = \frac{\kappa}{2}$	M1, A1

Question Number	Scheme	Marks
5.(a)	$x^{2} + x - 6 = (x+3)(x-2)$ $\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x(x-2) + 3(2x+1)}{(x+3)(x-2)}$	B1 M1
	$=\frac{x^2+4x+3}{(x+3)(x-2)}$	A1
	$= \frac{(x+3)(x+1)}{(x+3)(x-2)}$ $= \frac{(x+1)}{(x-2)}$ cso	A1*
(b)	One end either $(y) > 1, (y) \ge 1$ or $(y) < 4, (y) \le 4$ 1 < y < 4	B1 B1 (2)
(c)	Attempt to set Either $g(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{-1}(x) = x$ or $g^{2}(x) = x$ x + 1	
	$\frac{(x+1)}{(x-2)} = x \qquad \frac{x+1}{x-2} = \frac{2x+1}{x-1} \qquad \frac{2x+1}{x-1} = x \qquad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$	M1
	$x^{2} - 3x - 1 = 0 \Longrightarrow x = \dots$ $3 + \sqrt{13} = (1.5 + \sqrt{2.25})$	A1, dM1
	$a = \frac{1}{2} \operatorname{oe}(1.5 + \sqrt{3.25})$ cso	
		(4) (10 marks)

Question Number	Scheme	Marks
7(a)	$0 \leq f(x) \leq 10$	B1
		(1)
(b)	ff(0) = f(5), = 3	B1,B1
		(2)
(c)	$y = \frac{4+3x}{5-x} \Longrightarrow y(5-x) = 4+3x$	
	\Rightarrow 5y - 4 = xy + 3x	M1
	$\Rightarrow 5y-4 = x(y+3) \Rightarrow x = \frac{5y-4}{y+3}$	dM1
	$g^{-1}(x) = \frac{5x - 4}{3 + x}$	A1
		(3)
(d)	$gf(x) = 16 \implies f(x) = g^{-1}(16) = 4$ oe	M1A1
	$f(x) = 4 \Longrightarrow x = 6$	B1
	$f(x) = 4 \Longrightarrow 5 - 2.5x = 4 \Longrightarrow x = 0.4$ oe	M1A1
		(5)
		(11 marks)
Alt 1 to 7(d)	$gf(x) = 16 \Longrightarrow \frac{4 + 3(ax + b)}{5 - (ax + b)} = 16$	M1
	ax + b = x - 2 or 5 - 2.5x	A1
	$\Rightarrow x = 6$	B1
	$\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Longrightarrow x = \dots$	M1
	$\Rightarrow x = 0.4$ oe	A1 (5)

Question	Scheme	Marks	AOs
11(a)	x = -4 or $y = -5$	B1	1.1b
	P(-4, -5)	B1	2.2a
		(2)	
(b)	$3x + 40 = -2(x + 4) - 5 \Longrightarrow x = \dots$	M1	1.1b
	x = -10.6	A1	2.1
		(2)	
(c)	a > 2	B1	2.2a
	$y = ax \Longrightarrow -5 = -4a \Longrightarrow a = \frac{5}{4}$	M1	3.1a
	${a:a \leq 1.25} \cup {a:a > 2}$	A1	2.5
		(3)	
			(7 marks)

Question Number	Scheme	Marks	
4(a)	fg(1) = f(2) = 7	M1A1	
(b)	Either g(0)=3 or $g(x \rightarrow \infty) \rightarrow 0.5$	M1	(2)
	$0.5 < g(x) \leqslant 3$	A1	(2)
(c)	Attempt change of subject of $y = \frac{x+9}{2x+3} \Rightarrow y(2x+3) = x+9$		
	$\Rightarrow 2xy - x = 9 - 3y$	M1	
	$\Rightarrow x(2y-1) = 9 - 3y \Rightarrow x = \frac{9 - 3y}{2y - 1}$	dM1	
	$g^{-1}(x) = \frac{9-3x}{2x-1}, 0.5 < x \leq 3$	A1, B1 ft	
			(4)
(d)	Attempts $f(0) = 2 \times 3 + 5 = 11 \Rightarrow k \le 11$ Or $f(3) = 2 \times 0 + 5 = 5 \Rightarrow k > 5$	M1A1	
	$\mathcal{I} < \kappa \leq 11$	AI	(3)
		(11 marks)	

Question Number	Scheme		
3(a)	$v \bullet$ V shape just in Quad 1 and correct position	B1	
	⁸ Meets/cuts <i>y</i> axis at (0,8)	B1	
	Meets x axis at (4,0)	B1	
	$0 \mid 4 x$		(3)
(b)	x = 1	B1	
	$x + 5 = -(8 - 2x) \Longrightarrow x = 13$	M1A1	(3)
(c)	fg(5) = f(2) = -1	M1A1	(3)
			(2)
(d)	f'(x) = 2x - 3 \Rightarrow min at $x = \frac{3}{2} \Rightarrow$ min $= -\frac{5}{4}$	M1A1	
	Maximum value = 5	B1	
	$-\frac{5}{4}$, f(x), 5	A1	
	т Т		(4)
		(12 marks))

Question Number	Scheme		Notes	Marks
6(a)(i)			V shape with vertex on <i>x</i> -axis but not at the origin.	B1
	(0, a) (a, 0)		Correct V shape with $(0, a)$ or just a and $(a, 0)$ or just a marked in the correct places. Left branch must cross or touch the y-axis. Allow coordinates the wrong way round if marked in the correct place.	B1
	A			(2)
(a)(ii)			Their part (i) translated down (by any amount) but clearly not left or right, or the correct shape i.e. a V with the vertex in 4 th quadrant.	B1ft
(0,	(a-b)		A <i>y</i> -intercept of $a - b$ on the positive <i>y</i> -axis or intercepts of a - b and $a + b$ on the positive <i>x</i> - axis with $a + b$ to the right of $a - b$	B1
			A fully correct diagram.	B1
				(3)
(b)	$x - a - b = \frac{1}{2}x \Longrightarrow x = \dots$		Solves $x - a - b = \frac{1}{2}x$ or solves	
	or $-x + a - b = \frac{1}{2}x \Longrightarrow x = \dots$		$-x + a - b = \frac{1}{2}x$ as far as $x = \dots$ Allow < or > for =	M1
	$x - a - b = \frac{1}{2}x \Longrightarrow x = \dots$		Solves $x - a - b = \frac{1}{2}x$ and solves	
	and $-x + a - b = \frac{1}{2} x \implies x =$		$-x + a - b = \frac{1}{2}x$ as far as $x =$	M1
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Allow < or > for =.	
		$\frac{ddM1:C}{ddM1:C}$	hooses inside region.	
		AI: Allo	w alternatives e.g.	
		x < 2(a +	b) and $x > \frac{2}{3}(a-b)$,	
	$\frac{2}{3}(a-b) < x < 2(a+b)$	x < 2(a +	$b) \cap x > \frac{2}{3}(a-b),$	ddM1A1
		$\left(\frac{2}{3}(a-b)\right)$), $2(a+b)$ but not	
		x < 2(a +	$b), x > \frac{2}{3}(a-b)$	
				(4)
				(9 marks)

Question Number	Scheme		Marks
9(a)(i)	$y = 2 \ln x - 4$	Shape	B1
		$\left(e^2,0\right)$	B1
	$O \left \int \left(e^2, 0 \right) \right $	Asymptote $x = 0$	B1
			(3)
(a)(ii)	y	Shape	B1ft
	$y = 2 \ln x - 4 $ $O \qquad (e^2, 0) \qquad x$	Asymptote and coordinate	B1ft
			(2)
(b)	$2\ln x - 4 = 4 \Rightarrow \ln x = 4 \Rightarrow x = e^4$		M1A1
	$2\ln x - 4 = -4 \Longrightarrow \ln x = 0 \Longrightarrow x = 1$		M1A1
			(4)
(c)	$gf(x) = e^{2\ln x - 4 + 5} - 2, = e^{1} \times e^{2\ln x} - 2 = e^{1} \times e^{2} - 2$		M1,dM1A1
			(3)
(d)	gf(x) > -2		B1
			(1)
			(15 marks)

(a)(i)

B1: For a logarithmic shaped curve in any position. For this mark be tolerant on slips of the pen at either end. See Practice and Qualification for examples.

B1: Intersection with the *x* axis at $(e^2, 0)$.

Allow e^2 marked on the x axis. Condone $(0, e^2)$ being marked on the positive x axis.

Do not allow e^2 appearing as 7.39 for this mark unless e^2 is seen in the body of the script.

Allow if the coordinate is given in body of script. If they are given in the body of the script and differently on the curve (save for the decimal equivalent) then the ones on the curve take precedence.

B1: Equation of asymptote is x = 0 (do not allow "*y*-axis"). Note that the curve must appear to have an asymptote at x = 0

(a)(ii)

- B1ft: For either the correct shape or a reflection of their "negative" curve in (a) in the *x*-axis. For this to be scored it must have appeared both above and below the *x*-axis. The curve to the lhs of the intercept must appear to have the correct curvature
- B1ft: Score for the correct coordinates and asymptote. Alternatively follow through on the coordinates and asymptote given in part (a) as long as the curve appeared both above and below the *x*-axis and the curve approaches the same asymptote stated in (a)(i). Do not penalise "*y*-axis" given as the asymptote twice i.e. penalise in (a)(i) only.

If the curves are sketched on the same axes - it must be clear which curve is which - if in doubt use review.

Question Number	Scheme		
6.(a)(i)	(0,a) V shape on x - axis or coordinates $\left(\frac{1}{2}a,0\right)$ and (0,a) O $\left(\frac{1}{2}a,0\right)$ x Correct shape, position and coordinates	B1 B1	
(ii)	(0, a+b) $(0, a+b)$	B1ft B1	(4)
(b)	States or uses $a + b = 8$ Attempts to solve $ 2x - a + b = \frac{3}{2}x + 8$ in either x or with $x = c$ $2c - a + b = \frac{3}{2}c + 8 \Longrightarrow kc = f(a, b)$	B1 M1	
	Combines $kc = f(a,b)$ with $a+b=8 \implies c=4a$	dM1 A1 (8 marks)	(4)

(a)(i)

- B1 V shape sitting anywhere on the *x* axis or for $(\frac{1}{2}a, 0)$ and (0, a) lying on the curve. Condone non -symmetrical graphs and ones lying on just one side of the *y* -axis
- B1 V shape sitting on the positive x-axis at $(\frac{1}{2}a, 0)$, cutting the y-axis at (0, a) and lying in both quadrants 1 and 2 Accept $\frac{1}{2}a$ and a marked on the correct axis. Condone say (a, 0) for (0, a) as long as it is on the correct axis. Condone a dotted line appearing on the diagram as many reflect y = 2x - a to sketch y = |2x - a|If it is a solid line then it would not score the shape mark.

- B1ft Follow through on (a)(i). Their graph translated up. Allow on U shapes and non symmetrical graphs. Alternatively score for the (0, a+b) lying on the curve
- B1 V shape lying in quadrants 1 and 2 with the vertex in quadrant 1 cutting the *y* axis at (0, a+b)Ignore any coordinates given for the vertex.

⁽a)(ii)

- (a)
- B1 A 'V' shaped graph. The position is not important. Do not accept curves. See practice and qualification items for clarity. Accept a V shape with a 'dotted' extension of y = 4x 3 appearing under the x axis.
- B1 The graph **meets** the x axis at $x = \frac{3}{4}$ and **crosses** the y axis at y = 3. Do not allow multiple meets or crosses If they have lost the previous B1 mark for an extra section of graph underneath the x axis allow for **crossing** the x axis at $x = \frac{3}{4}$ and **crosses** the y axis at y = 3.

Accept marked elsewhere on the page with A and B marked on the graph and $A = \left(\frac{3}{4}, 0\right)$ and B = (0,3)

Condone
$$\left(0, \frac{3}{4}\right)$$
 and $(3, 0)$ marked on the correct axis

- (b)
- M1 Attempts to solve |4x-3|...2-2x finding at least one solution. You may see ... replaced by either = or > Accept as evidence $\pm 4x \pm 3 = 2 2x \Longrightarrow x = ..$ Accept as evidence $\pm 4x \pm 3 > 2 - 2x \Longrightarrow x > ...$, or x < ...
- A1 Both critical values $x = \frac{5}{6}$ and $x = \frac{1}{2}$, or one inequality, accept $x > \frac{5}{6}$ or $x < \frac{1}{2}$ Accept x = 0.83 and x = 0.5 for the critical values

Accept both of these answers with no incorrect working for both marks

- dM1Dependent upon the previous M, this is scored for selecting the outside region of their two points. Eg if M1 has been scored for $4x - 3 = 2 - 2x \Rightarrow x = 0.83$ and $-4x - 3 = 2 - 2x \Rightarrow x = -2.5$ A correct application of M1 would be x < -2.5, x > 0.83
- A1 Correct answer only $x < \frac{1}{2}$ or $x > \frac{5}{6}$.

Accept x < 0.5, x > 0.83

- (c)
- M1 Either sketch both lines showing a single intersection at the point $x = \frac{3}{4}$

Or solves $|4x-3| = 1\frac{1}{2} - 2x$ using both $4x - 3 = 1\frac{1}{2} - 2x$ and $-4x + 3 = 1\frac{1}{2} - 2x$ giving one solution $x = \frac{3}{4}$ Accept $|4x-3| > 1\frac{1}{2} - 2x$ using both $4x - 3 > 1\frac{1}{2} - 2x$ and $-4x + 3 > 1\frac{1}{2} - 2x$ giving one solution $x = \frac{3}{4}$

If two values are obtained using either method it is M0A0

A1 States that the solution set is all values apart from $x = \frac{3}{4}$. Do not isw in this question. Score their final statement. Accept versions of all values of *x* except $x = \frac{3}{4}$ or $x \in \mathbb{R}$, $x \neq \frac{3}{4}$, or $x < \frac{3}{4}$, $x > \frac{3}{4}$

Question Number	Scheme	Marks
4.(a)	$f(x) \ge 3$	M1A1
		(2)
(b)	An attempt to find $2 3-4x +3$ when $x=1$	M1
	Correct answer $fg(1) = 5$	A1
		(2)
(c)	$y = 3 - 4x \Longrightarrow 4x = 3 - y \Longrightarrow x = \frac{3 - y}{4}$	M1
	$g^{-1}(x) = \frac{3-x}{4}$	A1
		(2)
(d)	$[g(x)]^2 = (3-4x)^2$	B1
	gg(x) = 3 - 4(3 - 4x)	M1
	$gg(x) + [g(x)]^2 = 0 \Longrightarrow -9 + 16x + 9 - 24x + 16x^2 = 0$	
	$16x^2 - 8x = 0$	A1
	$8x(2x-1) = 0 \Longrightarrow x = 0, 0.5 \qquad \text{oe}$	M1A1
		(5)
		(11 marks)

(a) Note that this appears as M1A1 on EPEN

- B1 Shape (inc cusp) with graph in just quadrants 1 and 2. Do not be overly concerned about relative gradients, but the left hand section of the curve should not bend back beyond the cusp
- B1 This is independent, and for the curve touching the x-axis at (-1.5, 0) and crossing the y-axis at (0,5)

(b) Note that this appears as M1A1 on EPEN

- B1 For a U shaped curve symmetrical about the y- axis
- B1 (0,5) lies on the curve
- (c) Note that this appears as M1B1B1 on EPEN
 - B1 Correct shape- do not be overly concerned about relative gradients. Look for a similar shape to f(x)
 - B1 Curve **crosses** the y axis at (0, 10). The curve must appear in both quadrants 1 and 2
 - B1 Curve **crosses** the x axis at (-0.5, 0). The curve must appear in quadrants 3 and 2.

In all parts accept the following for any co-ordinate. Using (0,3) as an example, accept both (3,0) or 3 written on the *y* axis (as long as the curve passes through the point)

Special case with (a) and (b) completely correct but the wrong way around mark - SC(a) 0,1 SC(b) 0,1 Otherwise follow scheme

Question	Scheme	Marks
Number		
3 (a)	V shape	B1
	branches of graph cross x axis	B1
	'y' co-ordinate of R is -6	B1
	(0,-6)	(3)
(b)	^y	
	(-4,3) W shape	B1
	2 vertices on the negative <i>x</i> axis. W in both quad 1 & quad 2.	B1dep
	R'=(-4,3)	B1
		(3)
		6 Marks
4 (a)	$y = 4 - \ln(x + 2)$ $\ln(x + 2) = 4 - y$	
	$x + 2 = e^{4-y}$ $x = e^{4-y} - 2$ $f^{-1}(x) = e^{4-x} - 2$ oe	M1 M1A1 (3)
(b)		
	$x \leq 4$	B1 (1)
(c)	$fg(x) = 4 - \ln(e^{x^2} - 2 + 2)$	M1
	$fg(x) = 4 - x^2$	dM1A1 (3)
(d)	$fg(x) \le 4$	B1ft
		8 Marks

www.yesterdaysmathsexam.com

- B1 Shape unchanged. The positioning of the curve is not significant for this mark. The right hand section of the curve does not have to cross *x* axis.
- B1 The x- coordinates of P' and Q' are -5 and 0 respectively. This is for translating the curve 2 units left. The minimum point Q' must be on the y axis. Accept if -5 is marked on the x axis for P' with Q' on the y axis (marked -12).
- B1 The y- coordinates of P' and Q' are 0 and -12 respectively. This is for the stretch \times 3 parallel to the y axis. The maximum P' must be on the x axis. Accept if -12 is marked on the y axis for Q' with P' on the x axis (marked -5)
- (b)
- B1 The curve below the x axis reflected in the x axis and the curve above the x axis is unchanged. Do not accept if the curve is clearly rounded off with a zero gradient at the x axis but allow small curvature issues. Use the same principles on the lhs- do not accept if this is a cusp.
- B1 Both the x- and y- coordinates of Q', (2,4) given correctly and associated with the maximum point in the first quadrant. To gain this mark there must be a graph and it must only have one maximum. Accept as 2 and 4 marked on the correct axes or in the script as long as there is no ambiguity.
- B1 Both the x- and y- coordinates of P', (-3,0) given correctly and associated with the minimum point in the second quadrant. To gain this mark there must be a graph. Tolerate two cusps if this mark has been lost earlier in the question. Accept (0, -3) marked on the correct axis.

Question No	Scheme	Marks
3	(a) $20 (\text{mm}^2)$	B1
		(1) (1)

(b) $'40' = 20 \ e^{1.5t} \rightarrow e^{1.5t} = c$ $e^{1.5t} = \frac{40}{20} = (2)$	A1
Correct order $1.5t = ln'2' \rightarrow t = \frac{lnc}{1.5}$ $t = \frac{ln2}{1.5} = (awrt \ 0.46)$ 12.28 or 28 (minutes}	M1 A1 A1 (5)
	(6 marks)

B1 Sight of 20 relating to the value of A at t=0. Do not worry about (incorrect) units. Accept its sight in (b)

(b)

- M1 Substitutes A=40 or twice their answer to (a) and proceeds to $e^{1.5t} = constant$. Accept non numerical answers. A1 $e^{1.5t} = \frac{40}{20}$ or 2
- M1 Correct ln work to find t. Eg $e^{1.5t} = constant \rightarrow 1.5t = ln(constant) \rightarrow t =$ The order must be correct. Accept non numerical answers. See below for correct alternatives
- A1 Achieves either $\frac{\ln (2)}{1.5}$ or awrt 0.46 2sf
- A1 Either 12:28 or 28 (minutes). Cao

Alternatives in (b)

Alt 1- taking ln's of both sides on line 1

- M1 Substitutes A=40, or twice (a) takes ln's of both sides **and** proceeds to $\ln('40') = ln20 + lne^{1.5t}$
- A1 $\ln(40) = ln20 + 1.5t$
- M1 Make t the subject with correct *ln* work.

$$\ln('40') - \ln 20 = 1.5t \text{ or } \ln\left(\frac{'40'}{20}\right) = 1.5t \rightarrow t =$$

A1,A1 are the same

Alt 2- trial and improvement-hopefully seen rarely

- M1 Substitutes t= 0.46 and t=0.47 into $20e^{1.5t}$ to obtain A at both values. Must be to at least 2dp but you may accept tighter interval but the interval must span the correct value of 0.46209812
- A1 Obtains A(0.46)=39.87 AND A(0.47)=40.47 or equivalent
- M1 Substitutes t=0.462 and t=0.4625 into $40e^{1.5t}$
- A1 Obtains A(0.462)=39.99 AND A(0.4625)=40.02 or equivalent and states t=0.462 (3sf)
- A1 AS ABOVE

No working leading to fully correct accurate answer (3sf or better) send/escalate to team leader