Paper 1MA	Paper 1MA1: 3H						
Question	Working	Answer	Mark	Notes			
19 Q1	ŭ	$x < -2, x > \frac{1}{2}$	M1 A1 A1	for a first step to solve the quadratic e.g. factorisation: $(2x + 4)(x - \frac{1}{2})$ or $(2x - 1)(x + 2)$ or using the formula $\frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times (-2)}}{2 \times 2}$ for -2 and $\frac{1}{2}$			

Paper: 1MA1	/1H			
Question	Answer	Mark	Mark scheme	Additional guidance
20	2, 3, 4	M1	for method to solve $3n + 2 \le 14$ eg $n \le (14 - 2) \div 3$ oe	This could be shown within an equation rather than an inequality at this stage
		M1	for complete method to rearrange $\frac{6n}{n^2 + 5} > 1$ to the form $an^2 + bn + c $ (< 0)	For the 2rd and 3rd M marks condone no '< 0' and condone use of incorrect inequality signs or '='
		M1	for method to begin to solve $n^2 - 6n + 5$ (< 0) eg $(n \pm 5)(n \pm 1)$ (< 0)	Accept $\frac{6 \pm \sqrt{(-6)^2 - 4 \times 1 \times 5}}{2 \times 1}$
				(condone one sign error)
		M1	(dep on previous M2) for $n > 1$ and $n \le 4$ or $1 < n < 5$	Must come from correct working Could be shown on a number line
02		A1	(dep M4) cao	
Q2			Alternative method	
		M1	for method to solve $3n + 2 \le 14$ eg $n \le (14 - 2) \div 3$ oe	This could be shown within an equation rather than an inequality at this stage
			OR for $3 \times 4 + 2 = 14$	
		M3	for trials with 1, 2, 3 and 4 in the quadratic inequality, correctly evaluated	The values from the trials may be given as improper fractions $eg \frac{24}{21}, \frac{18}{14}, \frac{12}{9}, \frac{6}{6}$
		(M2	for trials with three of 1, 2, 3 and 4, correctly evaluated)	21 17) 0
		(M1	for trials with two of 1, 2, 3 and 4, correctly evaluated)	
		A1	(dep M4) cao	

Paper:	Paper: 1MA1/3H							
Questio	n	Answer	Mark	Mark scheme	Additional guidance			
18	(a)	$6x^3 + 35x^2 + 58x + 21$	M1	for a method to find the product of two linear expressions, 3 correct terms out of 4 terms e.g. $2x^2 + x + 6x + 3$ or $3x^2 + 7x + 9x + 21$ or $6x^2 + 14x + 3x + 7$ Note that, for example, $7x + 3$ is regard three terms in the expansion of $(2x + 6x + 3)$ or $3x^2 + 7x + 9x + 21$ or $6x^2 + 14x + 3x + 7$				
			M1	for a complete method to obtain all terms, at least half of which are correct (ft their first product) e.g. $6x^3 + 32x^2 + 42x + 3x^2 + 16x + 21$	First product must be a 3 or 4 term quadratic but need not be simplified or may be simplified incorrectly			
Q3			A1	cao	Accept $a = 6, b = 35, c = 58, d = 21$			
	(b)	$\frac{2}{5} < x < 1\frac{3}{5}$	M1	for first step of finding the square root of both sides eg $1-x < \pm \frac{3}{5}$ OR for writing in the form $ax^2 + bx + c$ (< 0) eg $x^2 - 2x + \frac{16}{25}$ (< 0) or $25x^2 - 50x + 16$ (< 0)	Condone use of an "=" sign; accept one square root (eg $\frac{3}{5}$) only shown.			
			M1	for showing critical values $\frac{2}{5}$ (= 0.4) and $1\frac{3}{5}$ (= 1.6) oe	Critical values can be stated, or shown in an expression (which may have incorrect inequality symbols)			
			A1	for $\frac{2}{5} < x < 1\frac{3}{5}$ oe Could be written as two separate express $x > \frac{2}{5} \text{ and } x < 1\frac{3}{5} \text{ oe}$				

${\tt www.yesterdaysmathsexam.com}$

Paper: 1MA1	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
19	9 < m < 11 -11 < m < -9	M1	for a correct method to begin rearranging to solve for m^2 eg $88 < m^2 + 7$ or $m^2 + 7 < 128$ or $81 < m^2 < 121$	It is insufficient to just multiply all three elements by 4; some rearrangement must occur such as showing as two separate inequalities or isolating m^2				
		M1	for a complete method to $m^2 = 81$ or $m^2 = 121$ or better	Accept an inequality used in place of "=". m^2 must be isolated at this stage.				
Q4		M1	for a set of critical values: at least two out of $9, 11, -9, -11$	Do not award if other values are also given eg 10				
eg $9 < m$ and $m < -9$ or or a set of inequalities with eg $9 ? m ? 11$ and $-11 ? m$ symbol like $9 < m \le 11$ or		for selecting a correct inequality for one set of critical values eg $9 < m$ and $m < -9$ or $m < 11$ and $-11 < m$ or $9 < m$ and $m < 11$ or a set of inequalities with some error eg $9 ? m ? 11$ and $-11 ? m ? -9$ where ? is an incorrect inequality symbol like $9 < m \le 11$ or $9 \ge m \ge 11$ or answer given as $\pm 9 < m < \pm 11$	Could be shown as $9 < m < 11$ or $-11 < m < -9$ or $-11 < m < 11$					
		A1	9 < m < 11 and $-11 < m < -9$ given as boundaries of m	Accept with an "and" or an "or" or neither				

Paper: 1MA	Paper: 1MA1/2H						
Question	Answer	Mark	Mark scheme	Additional guidance			
23 (a)	Shown	C1	for a method to find the area of half of the parallelogram or of the whole parallelogram, eg $\frac{1}{2}(2x-1)(10-x)\sin 150$ or $\frac{1}{2}(2x-1)(10-x)\times \frac{1}{2}$ oe or $(2x-1)(10-x)\sin 150$ or $(2x-1)(10-x)\times \frac{1}{2}$ oe				
		C1	for a correct expansion of the whole area eg $\frac{1}{2}(20x - 10 - 2x^2 + x)$ or $\frac{1}{2}(-2x^2 + 21x - 10)$ or $-x^2 + 10.5x - 5$				
Q5		C1	complete chain of reasoning with fully correct algebra dealing with the inequality eg $x^2 - 10.5x + 5 < -15$ or $x^2 - 10.5x + 20 < 0$ or $2x^2 - 21x + 10 < -30$ which lead to $2x^2 - 21x + 40 < 0$				
(b)	2.5 < x < 8	M1	for factorising, $(2x-5)(x-8)$ Could use the formula				
		A1	for critical values, 2.5, 8				
		A1	for any statement that x is greater than 2.5 and x is less than 8	Need not be given as an inequality statement			

Paper: 1MA	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
22	x < -7, x > 8	M1	for method to solve $x^2 - 49 > 0$ eg $(x + 7)(x - 7)$ or 7 and -7	accept use of = or incorrect inequality symbol for both the M marks				
		A1	for $x < -7$ and $x > 7$	This may be implied by a suitable diagram				
		M1	for method to solve $5x^2 - 31x - 72 > 0$					
Q6			eg $(5x \pm 9)(x \pm 8)$ or $\frac{31 \pm \sqrt{(-31)^2 - 4 \times 5 \times (-72)}}{2 \times 5}$ or 8 and -1.8 oe					
		A1	for $x < -1.8$ and $x > 8$	This may be implied by a suitable diagram				
			101.11	This may be improve by a surmore diagram				
		A1	cao					

Paper: 1MA	Paper: 1MA1/1H					
Question	Working	Answer	Mark	Notes		
23		x > 2	P1	for process to derive algebraic expressions for area of both rectangle and triangle eg $(x-1)(3x-2)$ and $(2x \times x) \div 2$ (condone missing brackets)		
Q 7			M1	for method to rearrange inequality to $2x^2-5x+2>0$ oe providing in the form $ax^2 + bx + c>0$		
_			M1	for a correct method to solve $2x^2-5x+2>0$		
			M1	for establishing critical values 2 and $\frac{1}{2}$		
			A1	x > 2		