Paper 1MA	Paper 1MA1: 3H							
Question	Working	Answer	Mark	Notes				
18	Note DOC=DOA,	21.6	P1	Recognises that OAD or OCD is 90° or right angle				
	ADO=CDO		P1	for using trigonometry to set up an equation in DOA or ADO				
				$eg \operatorname{Cos} DOA = \frac{5}{9}$				
01			P1	for using inverse trigonometry to find DOA or ADO				
				eg $DOA = \cos^{-1} \frac{5}{9} (= 56.25)$				
			P1	for a complete process to find arc length <i>ABC</i> or <i>AC</i>				
				eg $\frac{360-2\times 56.25}{360} \times 2 \times \pi \times 5$ (=21.598) or $\frac{2\times 56.25}{360} \times 2 \times \pi \times 5$ (=9.8174)				
			A1	for answer in the range 21.5 to 21.65				

Paper: 1MA1	Paper: 1MA1/1H					
Question	Answer	Mark	Mark scheme	Additional guidance		
11	90 - 2x	M1	for identifying an unknown angle eg $BAO = x$, $AOB = 180 - 2x$, $OBC = 90$, $ABC = 90 + x$	Could be shown on the diagram alone		
		M1 A1	full method to find the required angle eg a method leading to $180 - x - x - 90$ for $90 - 2x$	Needs to be an algebraic method Accept $x + x + 90 + y = 180$ for M2		
Q2		C2	(dep M2) full reasons for their method, from base angles in an <u>isosceles triangle</u> are equal <u>angles</u> in a <u>triangle</u> add up to 180° a <u>tangent</u> to a circle is perpendicular to the <u>radius (diameter)</u> <u>angles</u> on a straight <u>line equal 180°</u> the <u>exterior angle</u> of a triangle is <u>equal</u> to the sum of the <u>interior</u> <u>opposite angles</u>	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.		
		(C1	(dep M1) for a <u>tangent</u> to a circle is perpendicular to the <u>radius</u> $(\underline{diameter})$)	Apply the above criteria		

Paper: 1MA1	Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance	
13 (a)	Shown	M1	for finding one missing angle eg $BDE = y$ or $ODE = 90$ or $ODF = 90$ or $DBO = x$ or $BCD = 180 - y$ or (reflex) $BOD = 2y$	Could be shown on the diagram or in working	
		A1	for a complete correct method leading to $y - x = 90$		
Q3		C1	 (dep on A1) for all correct circle theorems given appropriate for their working eg The tangent to a circle is perpendicular (90°) to the radius (diameter) <u>Alternate segment</u> theorem OR <u>Angle</u> at the centre is twice the angle at the circumference Opposite angles in a cyclic quadrilateral sum to 180° 		
(b)	Explanation	C1	for explanation eg No as y must be less than 180 as it is an angle in a triangle		

Paper: 1MA1	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
18	75° with reasons	M1	for finding angle $BAD = \frac{180 - 40}{2}$ (= 70)	Could be shown on the diagram or in working				
			or angle $BDA = \frac{180 - 40}{2} (= 70)$					
		M1	for finding angle $BCD = 180 - "70"$ (=110) or $40 + x + 70 + x = 180$					
		A1	for finding angle $ADE = 75$					
Q4		C2	(dep M2) for <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 and one other reason; all reasons given must be appropriate for their working Base angles of an <u>isosceles triangle</u> are equal <u>Angles</u> in a <u>triangle</u> add up to 180, <u>Angles</u> on a straight <u>line</u> add up to 180 [or <u>exterior angle</u> of a <u>cyclic</u> <u>quadrilateral</u> is equal to the <u>interior opposite angle</u>]	Underlined words need to be shown; reasons need to be linked to their method				
		(C1	(dep M2) for <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180, or all other reasons given appropriate for their working)	Apply the above criteria				

Paper: 1M	Paper: 1MA1/3H							
Question	Answer	Mark	Mark scheme	Additional guidance				
14	60	M1	for angle DBF , eg 180 – 100 (= 80)	Angles may be shown on the diagram or in				
14 Q5	60 (supported)	M1 M1 A1 C1	for angle <i>DBF</i> , eg $180 - 100 (= 80)$ for angle <i>BFD</i> , eg $180 - "80" - 40 (= 60)$ or for angle <i>CBF</i> = 40 for angle <i>ABD</i> = 60 (dep M2) for at least 2 reasons from <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 <u>Angles</u> in a <u>triangle</u> add up to 180 Alternate segment theorem	Angles may be shown on the diagram or in working Underlined words need to be shown; reasons need to be linked to their method				
			OR <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 <u>Alternate segment</u> theorem <u>Angles</u> on a straight <u>line</u> add up to 180					

Paper: 1MA1	aper: 1MA1/2H								
Question	Answer	Mark	Mark scheme	Additional guidance					
14	25 with reasons	M1	for method to find angle BCD eg $180 \div (3 + 1)$ (= 45) or $BAD = 180 \div (3 + 1) \times 3$ (=135)	Could be shown on the diagram or in working					
		M1	for method to find angle BDA eg $180 - 20 - (180 - "45")$ (=25) or method to find angle SBD eg $SBD = BCD$ (=45)	Do not award if it ambiguous as to which angle is being found					
Q6		C2	for finding <i>SBA</i> (=25) and both reasons given, eg <u>Opposite angles</u> of a <u>cyclic</u> <u>quadrilateral</u> add up to 180 for angle <i>SBD</i> = 45 because <u>alternate segment</u> theorem						
		(C1	(dep M1) for one reason given <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 for angle <i>SBD</i> = 45 because <u>alternate segment</u> theorem)	Underlined words need to be shown; reasons need to be linked to their method					

Paper: 1MA1	Paper: 1MA1/1H					
Question	Answer	Mark	Mark scheme	Additional guidance		
12	21	C1	for angle $OAB = 90 - 56 (= 34)$	Throughout, angles may be written on the diagram; accept as evidence if correct. Ignore		
Q7		C1	for process to find angle CAD (= 69) or angle BCA (= 56) or angle COA (= 138), eg use of alternate segment theorem or angle at centre is twice the angle at the circumference	absence of degree sign Reasons need not be given.		
		C1	сао			

Paper: 1MA1	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
21	proof	C1	uses cyclic quad eg if $CAB = x$ then $CRO = 180 - x$ (<u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180°.)	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.				
Q8		C1	establishes relationship outside a circle eg $ORB = x$ (<u>Angles</u> on a straight <u>line</u> add up to 180)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.				
		C1	uses properties of a circle eg $RO = OB$ (both radii) so $ABC = x$ (Base angles of an <u>isosceles triangle</u> are equal.)					
		C1	Complete proof and conclusion	Full reasons given without any redundant reasons and correct reasoning throughout.				

Paper: 1MA1	Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance				
22	Proof	C1	for one correct pair of equal angles with correct reason from: angle ACB = angle ADB , (angles in the same segment are equal) angle DBC = angle DAC , (angles in the same segment are equal) angle ABD = angle ACD , (angles in the same segment are equal)	Underlined words need to be shown; reasons need to be linked to their statement(s)				
			or for recognising all angles of 60 in triangle <i>AED</i> and in triangle <i>CEB</i>)	Pairs of equal angles may be just shown on the diagram				
Q9		C1 C1 C1	for one identity, with reason(s), from the following list of alternatives: Alternatives: a complete method to show that angle ACB = angle DBC (= 60), or BC being common to both triangles or DB = DE + EB = AE + EC = AC (sides of an <u>equilateral triangle</u> are equal) or angle ABC = 60 + angle ABD = 60 + angle ACD = angle DCB (angles in the <u>same segment</u> are equal) or angle BDC = angle CAB (angles in the <u>same segment</u> are equal) or angle BDC = angle CAB (angles in the same segment are equal) for a second identity, with reason(s), from the alternatives above for concluding the proof with a third identity, with reason(s), from the alternatives above, together with the condition for congruency, ASA or SAS or AAS					

Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance	
17	61	B1	angle $OAD = 90$, may be marked on diagram	Angle could be shown by a right-angle symbol	
O10		M1	method to work out angle OAB (=29)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.	
QIU		A1	cao	Reasons need not be given. Award 0 marks for an answer of 61 with no other working.	

Paper: 1MA1	aper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
18	Result shown	M1	for angle $OBC = 90$ or for method to find angle OBA or angle OAB , eg $\frac{180 - x}{2}$ oe or for angle $ABC = 90$ – angle OBA , eg angle $ABC = 90 - y$ or marks point on circumference and draws triangle using A and B and	Angles must be clearly labelled on the diagram or otherwise identified. Correct method can be implied from angles on the diagram if no ambiguity or contradiction.			
		M1	for marks point on checumerence and draws triangle using A and B and point marked for method to find angle ABC, eg 90 – " $\frac{180-x}{2}$ " oe or for $x = 180 - 2 \times$ angle OBA, eg $x = 180 - 2y$ or for angle at circumference = $\frac{1}{2}x$				
Q11		C1	for correct algebra leading to angle $ABC = \frac{1}{2}x$ and one circle theorem relevant to their method, eg The tangent to a circle is perpendicular to the radius OR for $x = 180 - 2y$ and angle $ABC = 90 - y$ and one circle theorem relevant to their method, eg The tangent to a circle is perpendicular to the radius OR for angle $ABC = \frac{1}{2}x$ and one circle theorem relevant to their method, eg The tangent at the centre of a circle is twice the angle at the circumference or Alternate segment theorem	Underlined words need to be shown; reasons need to be linked to their method.			

Paper: 1MA	Paper: 1MA1/3H								
Question	Answer	Mark	Mark scheme	Additional guidance					
16	40	M1	for $ABD = 120$ and $AED = 60$ or for using the properties of a cyclic quadrilateral eg $EAB + BDE = 180$	Angles may be shown on the diagram					
Q12		M1	for using the ratio of 2 : 1 eg showing sizes of angles such that $EAB : BCD = 2 : 1$	May be expressed using algebra eg $EAB = 2x$ and $BCD = x$					
		M1	(dep on M1) for linking an angle from the cyclic quadrilateral with angle(s) in the triangle (other than $EAB : BCD = 2 : 1$) eg $BDE = BCD + 60$ or $BDE = 180 - BDC$ or $EAB + BCD + AEC = 180$	Could be expressed using algebra eg $x + 60 = 180 - 2x$					
		A1	for $BCD = 40$ from correct working						

Paper: 1MA1/2H					
Question	Answer	Mark	Mark	scheme	Additional guidance
20	98	M1	for $BAD = 132 \div 2 (= 66)$		Angles may be seen on diagram
		M1	eg <i>BCD</i> = 180 – "66" (= 114) or <i>ABE</i> = 180 – "66" – 16 (= 98)	M2 for reflex $BOD = 360 - 132$ (= 228) and $BCD = "228" \div 2$ (= 114)	
		A1	for finding $CDE = 98$		
Q13		C1	(dep on at least M2) for one circle theorem relevant to their method eg The angle at the centre of a circle is twice the angle at the <u>circumference</u> or Opposite angles of a cyclic quadrilateral add up to 180		Underlined words need to be shown; reasons need to be linked to their method.

Paper: 1MA	.1/3H			
Question	Answer	Mark	Mark scheme	Additional guidance
15	Proof	C1	for angle PQX = angle SRX as <u>angles</u> in the <u>same segment</u> are equal	Underlined words need to be shown; reasons
			(or <u>angles</u> at the circumference <u>subtended</u> from the same <u>arc/chord</u> of a circle are equal)	need to be linked to their method.
			or angle QPX = angle RSX as <u>angles</u> in the <u>same segment</u> are equal (or <u>angles</u> at the circumference <u>subtended</u> from the same <u>arc/chord</u> of a circle are equal)	
Q14			or angle <i>PXQ</i> = angle <i>SXR</i> as vertically <u>opposite angles/</u> <u>vertically opposite</u> angles are equal	Could be shown on the diagram
			or for identifying two pairs of corresponding equal angles with no reason given	
		C1	for identifying two pairs of corresponding equal angles with correct reasons given	
		C1	for stating that the triangles are similar because all three pairs of corresponding angles are equal with complete reasons given.	Note that the students third/final reason may be: <u>Angles</u> in a t <u>riangle</u> add up to 180

Paper: 1MA1/3H				
Question	Working	Answer	Mark	Notes
20		Proof	C1	draws OC and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled x)
Q15			C1	finds sum of angles in triangle <i>ABC</i> , eg $x + x + y + y = 180$, or sum of angles at <i>O</i> , eg $180 - 2x + 180 - 2y$
			C1	complete method leading to $ACB = 90$
			C1	complete proof with all reasons given, eg base angles of an <u>isosceles triangle</u> are equal, <u>angles</u> in a <u>triangle</u> add up to 180°, <u>angles</u> on a straight <u>line</u> add up to 180°

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
15 Q16		Proof	C1 C1 C1	for identifying one pair of equal angles with a correct reason, e.g. (angle) $BAE =$ (angle) CDE ; <u>angles</u> in the same <u>segment</u> are equal or <u>angles</u> at the circumference <u>subtended</u> on the same <u>arc</u> are equal or for identifying two pairs of equal angles with no correct reasons given (angles must be within the appropriate triangles) for identifying a second pair of equal angles with a correct reason, e.g. (angle) $AEB =$ (angle) DEC ; <u>opposite angles</u> or <u>vertically opposite</u> angles are equal or for identifying the three pairs of equal angles with no correct reasons given for stating the three pairs of equal angles of the two triangles e.g. $ABE = DCE$, $BEA = CED$, $EAB = EDC$ with fully correct reasons