Qu 5	Scheme	Marks	AO
(a)	Let $F \sim N(166.5, 6.1^2)$ $P(F < k) = 0.01 \Rightarrow \frac{k - 166.5}{k} = -2.3263$	M1	3.4
	k = 152.309 6.1 6.1 6.2	A1	1.1b
	$E_{\rm P}(150 < E < 175) = 1.0.014040$	(2)	1 11
(D)	[P(150 < F < 1/5) =] 0.914840 awrt 0.915	BI (1)	1.10
(c)	P(F > 160 150 < F < 175) $P(160 < F < 175)$ $P(160 < F < 175)$	M1	3.1b
	$= \frac{\Gamma(100 < F < 175)}{P(150 < F < 175)} \underline{\text{or}} \frac{\Gamma(100 < F < 175)}{"(b)"}$	M1	1.1b
	$=\frac{0.7749487}{0.7749487}$	Alft	1.1b
	"0.91484" = 0.84708 awrt 0.847	A1	1.1b
	H 1665 H 1665	(4)	
(a)	$H_0: \mu = 166.5$ $H_1: \mu < 166.5$ ((1))	B1	2.5
	[Let X = height of female from 2 nd country] $\overline{X} \sim N\left(166.5, \left(\frac{7.4}{\sqrt{50}}\right)^2\right)$	M1	3.3
	$P(\bar{X} < 164.6) = 0.03472$	A1	3.4
	[0.0347 < 0.05 so significant <u>or</u> reject H ₀]	dA1	2.2b
	There is evidence to support Mia's belief	(4)	
		(11 mar	ks)
	Notes	2 2 4 4 4	2.1
(a)	M1 for standardising (allow \pm) with k, 166.5 and 6.1 and set equal to a z value A1 for 152 or awrt 152.3 Ans only 2/2 [Condone poor use of notation e.g. P($\frac{1}{2}$	z.3 < z < (z-166.5) = -2	2.4
	Allow percentages instead of probabilities throughout.	6.1 / -	
(b)	B1 for awrt 0.915		
(c)	1 st M1 for interpreting demand as an appropriate conditional probability (\Rightarrow by 2 nd M1) 2 nd M1 for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow by 1 st A1ft) 1 st A1ft for a correct ratio of probs (can ft their "0.9148" to 3sf from (b) if > 0.775) 2 nd A1 for awrt 0.847		
(d)	B1 for both correct hypotheses in terms of μ		
	1 st M1 for selecting the correct model (needn't use $\overline{X} \Rightarrow$ by standardisation of	or 1 st A1)	
	1 st A1 for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if P(" \overline{X}	"<164.6)s	seen)
ALT	Condone $P("X" > 164.6) = 0.9652$ or awrt 0.97 <u>only if</u> comparison with 0.95 is made Use of τ values Need to see $Z = -1.8(15 - 1)$ and as of ± 1.6440 (allows 1.64 or better) for 1 st 4.1		
ALT	Use of CR or CV for \overline{X} : Need to see " \overline{X} "< 164 7786 or CV = (awrt 16	4.8) for 1^{st}	Al
	Condone truncation i.e 164.7 or better		
	2 ^{na} dA1 (dep on M1A1 only) for a correct inference in context. Must mention Mia's belief or mean height of females/women		
	Do NOT award if contradictory statements about hypotheses made e.g.	"not sig"	
SC	M0 for $\overline{X} \sim N(164.6,)$ If they achieve $p = awrt 0.035$ (o.e. with z-value or CV correct conclusion in context is given score M0A0A1 [and SC for awrt	V of 166.3) and a
	concerconclusion in context is given score workowi [and SC 10] awit	0.77 - 0.7	

Qu 5	Scheme	Marks	AO
(a)	P(L > 16) = 0.69146 awrt 0.691	B1	1.1b
(1-)	$\mathbf{P}(L=20)$	(1)	
(0)	$P(L > 20 L > 16) = \frac{P(L > 20)}{P(L > 16)}$	M1	3.1b
	$=\frac{0.308537}{(a)}$ or $\frac{1-(a)}{(a)} = 0.44621$	Alft,	1.1b
	(a) (a)	AI JM1	1.10
	For calc to work require $(0.44621)^* = 0.03964$ awrt <u>0.0396</u>	Al	2.1 1.1b
(c)	Require: $[P(L > 4)]^2 \times [P(L > 20 L > 16)]^2$	(5) M1	1.1a
	$= (0.99976)^2 \times ("0.44621 ")^2$	A1ft	1 1b
	$= 0.19901 \qquad \text{awrt } 0.199 \text{ (*)}$	Alcso*	1 1h
	0.17701 awrt <u>0.177</u> ()	(3)	1.10
(d)	$H_0: \mu = 18$ $H_1: \mu > 18$	B1	2.5
	$\bar{L} \sim N\left(18, \left(\frac{4}{\sqrt{20}}\right)^2\right)$	M1	3.3
	$P(\bar{L} > 19.2) = P(Z > 1.3416) = 0.089856$	A1	3.4
	(0.0899 > 5%) or $(19.2 < 19.5)$ or $1.34 < 1.6449$ so not significant	A1	1.1b
	Insufficient evidence to support Alice's claim (or belief)	A1	3.5a
		(5)	-a)
	Notes (14 marks)		
(a)	B1 for evaluating probability using their calculator (awrt 0.691) Accept 0.69	915	
ക	1^{st} M1 for a first step of identifying a suitable conditional probability (either	form)	
	1^{st} A1ft for a ratio of probabilities with numerator = awrt 0.309 or 1 – (a) and denom = their (a)		
	2 nd A1 for awrt 0.446 (o.e.) Accept 0.4465 (from $\frac{0.3085}{0.691} = 0.44645$)		
	NB $\frac{P(16 < L < 20)}{P(L > 16)} = 0.5538$ scores M1A1A1 when they do $1 - 0.5538 = 0.5538$	4462	
	2^{nd} M1 (dep on 1 st M1) for 2 nd correct step i.e. (their 0.446) ⁴ or X~B(4. "0.446") and P(X=4)		
	3^{rd} A1 for awrt 0.0396		
(c)	1 st M1 for a correct approach to solving the problem (May be implied by A 1 st A1ft for P($L > 4$) = awrt 0.9998 used and ft their 0.44621 in correct expr	A1ft) ression	
	If use $P(L > 20) = 0.3085$ as 0.446 in (b) then M1 for $(0.3085)^2 \times [P(L > 4)]$	$\left \right ^{2}$; A1ft as	s above
*	2^{nd} A1cso for 0.199 or better with clear evidence of M1 [NB (0.4662) ² = 0.1	99 is M	0A0A0]
	Must see M1 scored by correct expression in symbols or values (M1A1ft)		
(d)	B1 for both hypotheses in terms of μ .		
	M1 for selecting a suitable model. Sight of <u>normal</u> , <u>mean</u> 18, <u>sd</u> $\frac{4}{\sqrt{20}}$ (o.e.) of	r <u>variance</u>	= 0.8
	1 st A1 for using the model correctly. Allow awrt 0.0899 or 0.09 from correct p	rob. staten	nent
ALT	CR $(\overline{L}) > 19.471$ (accept awrt 19.5) <u>or</u> CV of 1.6449 (or better: calc	1.644853	6)
	2 nd A1 for correct non-contextual conclusion. Wrong comparison or contradictions A)	
	Error giving 2^{nd} A0 implies 3^{rd} A0 but just a correct contextual conclusion can 3^{rd} A1 dep on M1 and 1^{st} A1 for a correct contextual conclusion manticaring A1	score A1A	l holiof
	<u>or</u> there is insufficient evidence that the mean <u>lifetime</u> is more than 18 h	iours	1/001101

Question	Scheme	Marks	AOs		
2(a)	IQR = 26.6 - 19.4 [= 7.2]	B1	2.1		
	$19.4 - 1.5 \times `7.2' [= 8.6]$ or $26.6 + 1.5 \times `7.2' [= 37.4]$	M1	1.1b		
	Plotting one upper whisker to 32.5 and one lower whisker to 8.6 or 9.1	A1	1.1b		
	Plotting 7.6 and 8.1 as the only two outliers	A1	1.1b		
		(4)			
(b)	October (since it is the month with the coldest temperatures between May and October in Beijing)		2.4		
		(1)			
(c)	$[\sigma =]\sqrt{\frac{4952.906}{184}}$ or e.g. $[\sigma =]\sqrt{\frac{S_{xx}}{n}} = 5.188$ $[=5.19*]$	B1cso*	1.1b		
		(1)			
(d)	$z = (\pm) 1.28(16)$ [$P_{90} =$]29.251 or [$P_{10} =$]15.948	B1	3.1b		
	2 × 1.2816 × 5.19 '29.251' – '15.948'	M1	1.1b		
	= awrt <u>13.3</u>	A1	1.1b		
		(3)			
(e)	Daily mean wind speed/Beaufort conversion since it is qualitative Rainfall since it is not symmetric/lots of days with 0 rainfall	BI B1	2.4 2.4		
		(2)	2.7		
		(1)	1 marks)		
	Notes				
	B1: for a correct calculation for the IQR (implied by 10.8 or 8.6	6 or 37.4 se	en)		
	M1: for a complete method for either lower outlier limit or upper (allow ft on their IOR) (may be implied by the $1^{st} \land 1$ or a	er outlier lin lower whis	nit ker at 8.6)		
(a)	A1: both whiskers plotted correctly (allow $\frac{1}{2}$ square tolerance)		ker at 0.0)		
	A1: only two outliers plotted, 7.6 and 8.1 (must be disconnected from whisker)				
	Blcso*: Correct expression with square root or correct formula and 5.188 or better				
(c)	Allow a complete correct method finding $\sum x^2 = \text{awrt } 98720 \text{ and } \sigma = \sqrt{\frac{98715.9}{184} - \left(\frac{4153.6}{184}\right)^2}$				
	B1: Identifying <i>z</i> -value for 10th or 90th percentile (allow awrt (±) 1.28)				
	or for identifying $[P_{90} =]29.251$ (awrt 29.3) or $[P_{10} =]15.$	948 (awr	t 15.9)		
(d)	(1 his may be implied by a correct answer awrt 13.3) M1: for $2 \times z \times 5.19$ where $1 \le z \le 2$				
	or for their $P_{90} - P_{10}$ where $25 < P_{90} < 35$ and $10 < P_{10} < 20$				
	A1: awrt 13.3				
	B1: for one variable identified and a correct supporting reason for two variables identified and a correct supporting reason	for each			
	Allow any two of the following:				
	• <u>Wind speed/Beaufort</u> since the data is <u>non-numeric</u> (o.e.). They	y need not m	nention		
	wind direction/wind gust)	ieric (Do i	lot allow		
(e)	• <u>Rainfall as not symmetric/is skewed/is not bell shaped/lots of (</u>)s /many day	s with no		
	 Tain/mean≠mode or median Date since each data value appears once/it is uniformly distributed 	uted			
	Daily mean <u>pressure</u> since it is not symmetric/is skewed/not be	ell shaped			
	• Daily mean <u>wind speed</u> since it is not symmetric/is skewed/not	t bell shaped	l		
	Ignore extraneous non-contradicting statements				

Question	Scheme	Marks	AOs
5(a)	$\frac{24.63 - 25}{'\sigma'} = -1.0364$	M1	3.1b
	$[\sigma =]0.357$ (must come from compatible signs)	A1	1.1b
	P(D > k) = 0.4 or P(D < k) = 0.6	B1	1.1b
	$\frac{k-25}{'0.357'} = 0.2533$		3.4
	k = awrt 25.09		1.1b
		(5)	
(b)	$[Y \sim B(200, 0.45) \rightarrow] W \sim N(90, 49.5)$	B1	3.3
	$P(Y < 100) \approx P(W < 99.5) \left[= P\left(Z < \frac{99.5 - 90}{\sqrt{49.5}}\right) \right]$	M1	3.4
	= 0.9115 awrt <u>0.912</u>	A1	1.1b
		(3)	
(c)	$H_0: \mu = 25$ $H_1: \mu < 25$	B1	2.5
	$[\bar{D} \sim] N\left(25, \frac{0.16^2}{20}\right)$	M1	3.3
	$P(\bar{D} < 24.94)[= P(Z < -1.677)] = 0.046766$	A1	3.4
	p = 0.047 < 0.05 or $z = -1.677 < -1.6449or 24.94 < 24.94115or reject H0/in the critical region/significant$		1.1b
	There is sufficient evidence to support <u>Hannah's belief</u> .		2.2b
		(5)	
		(1.	3 marks)
	Notes		
(a)	 M1: for standardising 24.63, 25 and 'σ' (ignore label) and setting = to z where 1 < z < 2 A1: [σ =] awrt 0.36. Do not award this mark if signs are not compatible. B1: for either correct probability statement (may be implied by correct answer) this mark may be scored for a correct region shown on a diagram M1: for a correct expression with z = awrt 0.253 (may be implied by correct answer) A1: awrt 25.00 (Correct answer with no incorrect working scores 5 out of 5) 		
(b)	B1: setting up normal distribution approximation of binomial N(90, 49.5) (may be implied by a correct answer) Look out for e.g. $\sigma = \frac{3\sqrt{22}}{2}$ or $\sigma = \text{awrt } 7.04$ M1: attempting a probability using a continuity correction i.e. P(W < 100.5), P(W < 99.5) or P(W < 98.5) condone \leq (The continuity correction may be seen in a standardisation). A1: awrt 0.912 [Note: 0.911299] from binomial scores 0 out of 31		
(c)	B1: for both hypotheses in terms of μ M1: selecting suitable model must see N(ormal), mean 25, sd = $\frac{0.16}{\sqrt{20}}$ (o.e.) or var = $\frac{4}{3125}$ (o.e.) Condone N(25, $\frac{0.16}{\sqrt{20}}$) if $\frac{0.16}{\sqrt{20}}$ then used as s.d. A1: <i>p</i> value = awrt 0.047 <u>or</u> test statistic awrt -1.68 <u>or</u> CV awrt 24.941 (any of these values imply the M1 provided they do not come from Normal mean = 24.94) M1: a correct comparison (including compatible signs) or correct non-contextual conclusion (f.t. their <i>p</i> value, test statistic or critical value in the comparison) M1 may be implied by a correct contextual statement		
	 A1: correct conclusion in context mentioning <u>Hannah's belief</u> or the mean <u>amount/liquid</u> in each bottle is now <u>less than 25</u>ml (d 	ep on M1A	1 M 1)

Qu 5	Scheme	Marks	AO
(a)	{Let $X = \text{time spent}, P(X > 15) = $ } 0.105649 awrt <u>0.106</u>	B1	1.1b
(b)	$H_0: \mu = 10 H_1: \mu > 10$	(1) B1	2.5
	$\overline{X} \sim N\left(10, \left(\frac{4}{\sqrt{20}}\right)^2\right); P(\overline{X} > 11.5) = 0.046766 [Condone 0.9532]$	M1;A1	3.3;3.4
	[This is significant ($< 5\%$) so] there is evidence to support the complaint	A1	2.2b
(c)(i)	[P(T < 2) =] 0.1956 awrt <u>0.196</u>	(4) B1 (1)	1.1b
(ii)	Require $\frac{P(0 < T < 2)}{P(T > 0)} = \frac{0.119119}{0.923436}; = 0.1289955 awrt 0.129$	M1 A1;A1	3.4 1.1bx2
(iii)	The current model suggests non-negligible probability of <i>T</i> values < 0 which is impossible	(3) B1	3.5b
(d)	Require t such that $P(T > t T > 2) = 0.5$ or $P(T < t T > 2) = 0.5$	(1) M1	3.1b
()	$e_{T} = \frac{P(T > t)}{P(T > t)} = 0.5 \times 0.8043$	M1;	1.1b
	P(T > 2) $P(T > 2)$	A1ft	3.4
	[i.e. $P(T > t) = 0.40$ implies] $\frac{t-5}{3.5} = 0.2533 \text{ or } P(T < t) = "0.5978"$	M1	1.1b
	t = 5.886 or from calculator 5.867 so awrt <u>5.9</u>	A1 (5)	1.1b
	Notes	(15 mai	rks)
(a)	B1 for awrt 0.106 (from calculator) [Allow 10.6%]		
(b)	B1 for both hypotheses correct in terms of μ .		
	M1 for selection of a correct model (sight or use of correct normal- may no	t have lab	el \overline{X})
ALT	1 st A1 for use of this model to get probability allow $0.046 \sim 0.047$ [Condone av	vrt 0.953] $\overline{X} > 11.4$	7
	OR test statistic $z = 1.677$ (awrt 1.68) and cv of 1.64 (of better) or CR $= 2^{nd} A1$ (dep on 1 st A1 or at least P($\overline{X} > 11.5$) < 0.05 (o, e,))	<i>A</i> > 11.4	/
	for a correct conclusion in context -must mention complaint /claim or ti	me /mins i	s > 10
SC	(M0 for $\overline{X} \sim N(11.5,)$ for correct probability and conclusion (score M0A0A)	1 on epen)
(c)(i)	B1 for awrt 0.196 (from calculator) [Allow 19.6%]		
(ii)	M1 for a correct probability ratio expression (may be implied by 1 st A1 sc 1 st A1 for a correct ratio of probabilities (both correct or truncated to 2 dp) 2 nd A1 for awrt 0.129	ored)	
(iii)	B1 for a suitable explanation of why model is not suitable based on negative <i>T</i> values Must say that a significant proportion of values < 0 (o.e.) e.g. $P(T > 0)$ should be closer to 1 <u>or</u> Difference between $P(T < 2 T > 0)$ and $P(T < 2)$ is too big (o.e.)		
(d)	1^{st} M1for a correct conditional probability statement to start the problem or 2^{nd} M1for correct ratio of probability expressions [Must have $P(T > t)$ or $P(2$ 1^{st} A1ftfor a correct equation for $P(T > t)$ (o.e.) ft their answer to part (c)[May 3^{rd} M1for attempt to find t (standardising and sight of 0.2533) or prepare to u Arriving at $P(T < median) = 1 - 0.5 \times$ "their 0.8043" will score 1^{st} 4 m 2^{nd} A1for awrt 5.9 Sight of awrt 5.9 and at least one M mark scores 5/5 [Answer only send	$0.5 \times P(T \ge T < t)]$ < T < t)] / be in a d use calc (f arks to review	> 2) liagram] t)

Question	Scheme	Marks	AOs
1(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = 8 so $1 \text{ cm}^2 = \frac{2}{3}$ hour (o.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $18 \div 2.5 = 7.2$ (cm)	A1	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	B1cao	1.1b
		(3)	
(b)	$[\bar{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\overline{y}^{2}} = \sqrt{13.644641} = \text{awrt } 3.69$		
		M1	1.1a
	allow $[s=] \sqrt{\frac{1785.25 - 31y^2}{30}} = $ awrt 3.75	A1	1.1b
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does <u>not</u> support his belief	A1	2.2b
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 (+5)$	M1	1.1b
	= 6.86 so 7 days	A1	1.1b
		(2)	
(e)	[$H = \text{no. of hours}$] P($H > 10.3$) or P($Z > 1$) = [0.15865]	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1b
		(2)	
(f)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
		(13 n	narks)

Paper 3: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
Q3(a)	49 50.75		
	P(L > 50.98) = 0.025	B1cao	3.4
	$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
	$\therefore \mu = 50$	Alcao	1.1b
	P(49 < <i>L</i> < 50.75)	M1	3.4
	= 0.9104 awrt <u>0.910</u>	A1ft	1.1b
		(5)	
(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
	$= P(S \leq 3) = 0.991166$ awrt 0.991	A1	1.1b
		(2)	
(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
	$\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$	M1	3.3
	$P(\bar{X} > 50.4) = 0.0264$	A1	3.4
	p = 0.0264 > 0.01 or $z = 1.936 < 2.3263$ and not significant	A1	1.1b
	There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>	A1	2.2b
		(5)	
		(1)	2 marks)

Question	Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S = no. of seeds out of 24 that germinate, S ~ B(24, 0.55)$]		
	$T = \text{no. of trays with at least 15 germinating.} T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt <u>0.149</u>	A1	1.1b
		(3)	
(c)	<i>n</i> is large and <i>p</i> close to 0.5	B1	1.2
		(1)	
(d)	X~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		()	9 marks)
Notes:			
(a) B1: cao			
 (b) M1: for selection of an appropriate model for T 1st A1: for a correct value of the parameter p (accept 0.3 or better) 2nd A1: for awrt 0.149 			
(c) P1: 1-41			
BI: Doth			
B1: for a	correct normal distribution		
M1: for a	correct use of continuity correction		
A1: cso			
(e) B1: corr	ect statement		

Question Number	Scheme	Marks
6	$_{\rm W}$ $_{\rm M}$ $\begin{pmatrix} 1 & 5 \end{pmatrix}$	M1A1
	$X \sim N\left(\frac{-6}{6}n, \frac{-3}{36}n\right)$ $P(X < 50) = P\left(Z < \frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}}\right)$	M1 dM1
	$\frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}} = -2.4$	M1 A1
	$49.5 - \frac{1}{6}n = -2.4 \frac{\sqrt{5n}}{6}$	
	$n - 2.4\sqrt{5}\sqrt{n} - 297 = 0$	M1 A1
	$\sqrt{n} = \frac{2.4\sqrt{5} \pm \sqrt{(2.4\sqrt{5})^2 + 4 \times 297}}{2}$ = 9\sqrt{5} or awrt 20.1	M1
	n = 405 only	A 1 cao
	Notes	Total 10
	M1 Using Normal with mean $\frac{1}{n}$	
	A1 Using Normal with mean and Var correct $M1 \pm \left(\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd}\right)$ M1 dep on previous M1 being awarded for using a continuity correction $49 \pm 0.5 \text{ or } 50 \pm 0.5$	
	M1 setting $\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd} = z \text{ value } z > 2$	I
	A1 A correct equation with compatible signs with z value awrt 2.4 $$	
	M1 rearranging to get a 3TQ in \sqrt{n} or n	
	A1 for a correct 3TQ equation in \sqrt{n} or n e.g. $n - 2.4\sqrt{5}\sqrt{n} - 297 = 0$	
	M1 Solving (allow one slip in an expression) their 3TQ leading to $\sqrt{n} = $ or	n =
	e.g. $\sqrt{n} = \frac{2.4\sqrt{5} \pm \sqrt{(2.4\sqrt{5})^2 + 4 \times 297}}{2}$ or $9\sqrt{5}$ or awrt 20.1	
	A1 cao with all previous marks scored.	

Question	Scheme	Marks	
2. (a)(i)	<i>X</i> ~B(6, 0.25)	B1	
(ii)	<u>Prizes</u> are r <u>andom</u> ly placed in <u>packets</u> .	B1	
	Each <u>packet</u> has a <u>25%</u> chance of containing a <u>prize</u>	(2)	
	Each <u>packet</u> contains a <u>prize independent</u> ly of others	(2)	
(b)	$P(X=1) = \binom{6}{1} (0.25)(1-0.25)^5 [= 0.355957] \text{ or } 0.5339 - 0.1780 [= 0.3559]$	M1	
	P(only 1 box contains exactly 1 prize) = $2P(X=1)(1 - P(X=1)) =$ answer in the range <u>0.458~0.459</u> (inc)	M1 A1 (3)	
(c)	$P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.5339 = 0.4661$ awrt <u>0.466</u>	M1 A1 (2)	
(d)	$Y \sim B(80, 0.4661) \rightarrow N(awrt 37.3, awrt 19.9)$ [Calc : 37.285, 19.9078]	B1ft	
	P(Y ≤ 30) ≈ P $\left(Z < \frac{30.5 - '37.3'}{\sqrt{19.9'}}\right)$	M1 dM1A1ft	
	P(Z < -1.52) = 1 - 0.9357 = 0.0643 (calc: 0.064165) awrt <u>0.064</u>	A1 (5)	
		Total 12	
(-)(2)	Notes $D1$ for a completely precified distribution. Condense $D((250/))$ must be in (a)(i)		
(a)(l) (ii)	B1 for a completely specified distribution. Condone B(6,25%) must be in (a)(1) B1 for a contextualised reason involving randomness, independence or constant p. Must mention "prize" and "packet" and for constant prob "0.25" in correct sta	robability tement.	
(b)	1 st M1 for a correct expression for $P(X=1)$ may <u>use</u> $P(X \le 1) - P(X=0)$ from tables with $X \sim B(6, 0.25)$ (May be implied by sight of awrt 0.356 or answer in range) 2 nd M1 for writing or using $2P(X=1)$ (1 – $P(X=1)$) NB M0M1A0 is possible Allow just $2P(X=1)$ (1 – $P(X=1)$) or a numerical expression with any $p = P(X=1)$ except $p = 0.25$ provided 0		
(c)	M1 for writing or using $1 - P(X \le 1)$ A1 for awrt 0.466 (calc: 0.46606445)		
(d)	1 st B1ft for mean = np and variance = $np(1-p)$ where p = 'their (c)' ft their 0.466 Any ft values must be correct to at least 3sf (29.5 or 30 or 30.5 – their mean)	o≠0.25	
	$1^{\text{st}} \text{M1} \pm \left(\frac{25.8 \text{ or } 50 \text{ or } 50.8 \text{ or } 100 \text{ mean}}{\text{their sd}}\right)$		
	2^{nd} M1 dependent on 1^{st} M1 for using a continuity correction 30 ± 0.5		
	1^{st} Alft for (+) correct standardized expression (ft their μ and σ) or $z = \text{awrt} + 1.52$		
	2^{nd} A1 awrt 0.064 [Use of $p = 0.25$ giving N(20, 15) can score B0M1M1A1A0 i.e. max 3/5]		
NB	Use of binomial (leads to 0.063398 or 0.063477) but scores 0 marks		

Question Number	Scheme		Marks
6. (a)	$X \sim B(30, 0.4)$ $X \sim B(30, 0.4)$		B1
(b)	 Eg: Any one of either Constant probability of buying <u>insurance</u> Customers buy <u>insurance</u> independently of each 	Any one of these two assumptions in context which refers to insurance	[1] B1
			[1]
(c)	P(X < r) < 0.05		
	$ \{ P(X \le 8) = P(X < 9) \} = 0.0940 $ For at 1 $ \{ P(X \le 7) = P(X < 8) \} = 0.0435 $	least one of either 0.094(0) or 0.0435 seen in part (c)	M1
	So <i>r</i> = 8	<i>r</i> = 8	A1
		Normal or N	[2]
(d)	$\{Y \sim B(100, 0.4) \approx\} Y \sim N(40, 24)$	(40, 24)	A1
	$\left\{ \mathbb{P}(Y \ge t) \right\} \approx \mathbb{P}(Y > t - 0.5)$	For either $t - 0.5$ or $t + 0.5$	M1
	$\left\{ = P\left(Z > \frac{(t-0.5)-40}{\sqrt{24}}\right) = 0.938 \right\}$		
	Standardising	(\pm) with their mean and their	
	$\frac{(t-0.5)-40}{\sqrt{2}} = -1.54$	standard deviation and either -0.5 or t or $t+0.5$ or $t-1.5$	M1
	√24 -1.54 or 1.54	4 or awrt – 1.54 or awrt 1.54	B1
	So, $\{$ So, $t = 32.955571 \} \Rightarrow t = 33$	t = 33	A1 cao
			[6]
(e)	$H_0: p = 0.4, H_1: p < 0.4$ Both h	ypotheses are stated correctly	B1
	$\{\text{Under H}_0, X \sim B(25, 0.4)\}$		
	Probability Method Critical Region Method	· 	
	$P(X \le 6);= 0.0736$	$P(X \leqslant 6)$	M1
	$P(X \le 6); = 0.0736 \qquad \{P(X \le 7) = 0.1536\}$	Either 0.0736 or CR : $X \le 6$ or CR : $X < 7$	A1
	$\{0.0736 < 0.10\}$	1	
	Reject H_0 or significant or 6 lies in the CR	Dependent on 1 st M1	dM1
See no See no		decreased.	A1 cso
			[5]
			15

Question Number	Scheme	Marks
4. (a)	$P(L > 100) = P\left(Z > \frac{100 - \mu}{0.5}\right) = 0.3$	
	$\Rightarrow \frac{100 - \mu}{0.5} =, \ 0.5244$	M1 B1
	$\mu = 99.7378$ cm awrt 99.7	A1
(b)	X represents number more than 100cm. $X \sim B(12, 0.3)$	(3) B1
	$P(X \le 2) = 0.2528$ awrt 0.253	M1A1
(c)	Normal approximation $\mu = 400 \times 0.3 = 120$, $\sigma^2 = 84$	(3) M1, A1
	$P(X > 127) \approx 1 - P(Z < \frac{127.5 - 120}{\sqrt{84}})$ ±0.5, standardise	M1, M1, A1
	$\approx 1 - P(Z < 0.818)$	
	=1-0.7939	
	= 0.206 or 0.207	A1 (6)
		[12]
	Notes	
(a)	M1 standardising (\pm) with 100, μ and 0.5 and setting equal to a z value. 0.5	< <i>z</i> < 0.7
	NB Use of $z = 0.7$ scores M0B0A0	
	B1 $z = \pm 0.5244$ or better (Calc. Gives 0.5244005). Must be used in an eq	[uation for μ .
	NB M1 + answer only of awrt 99.7 scores M1B0A1 but allow B1 for 99.7376 $\leq \mu$	<u>< 99.7379</u>
(b)	B1 writing B(12, 0.3)	
	M1 writing $P(X \le 2)$ May be implied by sight of 0.252 or 0.253.	
	NB P(X < 3) alone is M0 unless they show that $P(X < 3) = P(X = 0) + P(X = 1)$	+ P(X=2)
	A1 awrt 0.253. Answer only scores 3/3	
(c)	1 st M1 attempting to use a Normal approx. State N(μ, σ ²) with μ or σ correct 1 st A1 correct mean and var/sd 2 nd M1 continuity correction used: either 127.5 or 126.5 seen 3 rd M1 standardising with their μ and σ and finding correct area. Must lead to P(Z > 4 2 nd A1 $\frac{127.5 - 120}{\sqrt{84}}$ or awrt 0.82 3 rd A1 for awrt 0.206 or 0.207	⊦ve) (o.e.)

Question Number	Scheme	Marks
7	$\frac{64.5 - \mu}{\sigma} = 0.75$	B1 M1 M1 A1
	$\frac{52.5-\mu}{\sigma} = -1.25$	A1
	$64.5 - \mu = 0.75\sigma$	dM1
	$52.5 - \mu = -1.25\sigma$	
	$\sigma = 6$	A1
	$\mu = 60$	A1
	np = 60	M1
	np(1-p) = 36	M1
	1 - p = 0.6	
	<i>p</i> = 0.4	A1
	n = 150	A1
		(12)
		Total (12)
	Notes	
	B1 ± 0.75 and ± 1.25 (or better) seen	
	$1^{\text{st}} \text{ M1 } 64 \pm 0.5 \text{ or } 52 \pm 0.5$	
	2^{nd} M1 standardising either using 64, 65 or 64 ± 0.5 or 52,53 or 52 ± 0.5 with μ and σ or <i>np</i> and $\sqrt{np(1-p)}$ (need not be set equal to a z-value)	
	1 st A1 for $\frac{64.5 - \mu}{\sigma} = 0.75$ (with compatible signs)	
	2^{nd} A1 for $\frac{52.5 - \mu}{\sigma} = -1.25$ (with compatible signs)	
	3^{rd} M1 solving simultaneous equations dependent on 2^{nd} M1. Must attempt to eliminate μ or σ or <i>np</i> or $\sqrt{np(1-p)}$	
	$3^{rd} A1 \sigma = 6$ $4^{th} A1 \mu = 60$ $4^{th} M1$ using $\mu = np$ (may be awarded at any stage in the working) $5^{th} M1$ using $\sigma = \sqrt{np(1-p)}$ (may be awarded at any stage in the working)	
	- The using of where py (may be awarded at any stage in the working)	

Question Number	Scheme	Marks
3. (a)	$\{P(L < 45) = 0.4\} \Rightarrow \frac{45 - \mu}{\sigma} = -0.2533 \text{ or } \Rightarrow 45 - \mu = -0.2533 \sigma \text{ (o.e.)}$	M1
	$45 + 0.2533 \sigma = \mu$ (*)	Alcso (2)
(b)	$P(L < 35) = 0.15 \implies \frac{35 - \mu}{\sigma} = -1.0364$	(2) M1
	e.g. $35 + 1.0364\sigma = \mu$	A1 (2)
(c)	Solving: $10 - 0.7831\sigma = 0$ $\sigma = 12.7697$ awrt <u>12.8</u> $\mu = awrt$ <u>48.2</u>	M1 A1 A1
(d)(i)	$P(L > 35 L < 45) = \frac{P(35 < L < 45)}{P(L < 45)} = \frac{0.25}{0.15 + 0.25} = \frac{5}{8} (o.e.)$	(3) A1 M1
(ii)	$P(L < 45 L > 35) = \frac{P(35 < L < 45)}{P(L > 35)} = \frac{0.25}{0.60 + 0.25} = \frac{5}{17} \text{ or awrt } 0.294$	A1
(e)	Prob. of a yellow stick from Hei is $\frac{5}{8}$ which is > prob. of $\frac{5}{17}$ for Tang So more likely to be Hei	(3) B1ft dB1ft (2)
	Notes	[Total 12]
	Mark parts (a), (b) and (c) as one part but must see the "show that" for (a) s	omewhere
(a)	M1 for attempting to standardise with 45, μ and σ Allow + and allow $z = a$	wrt 0.25
	A1cso for sight of $P(L < 45) = 0.4$ (o.e.) and 0.2533 leading to given ans. [0.2533471 from calc]	
(b)	M1 for standardising with 35 μ and σ and setting equal to a <i>z</i> value with $1 < z < 1.05$ A1 for any correct equation, $z = 1.04$ or better and correct signs	
(c)	M1 for solving their 2 linear equations in μ and σ -reducing to an equation in 1 variable 1 st A1 for σ = awrt 12.8 (NB use of 1.04 gives 12.7113 so we penalise that here) 2 nd A1 for μ = awrt 48.2 [allow 48.3 if 12.8 used in a correct eqn e.g. 35+1.04×12.8 or better]	
(d)	M1 for a correct expression $[num = P(35 < L < 45)]$ with <u>some</u> correct values substituted This M1 may be implied by one of the correct probabilities for (i) or (ii)	
(i)	1^{st}A1 for $\frac{5}{8}$ or an exact equivalent e.g. 0.625	
(ii)	2^{nd} A1 for $\frac{5}{17}$ or awrt 0.294	
(e)	1 st B1ft for a correct comparison of their <u>probabilities</u> from (d) "probs" $\notin [0, 1]$ is B0 2 nd dB1ft for choosing Hei (dependent on a suitable reason that it is more likely to be hers) Allow e.g. "Hei, because her prob is greater" to score B1B1 provided (d)(i) > (d)(ii)	
ft	Allow "Tang" if their $(d)(i) < \text{their } (d)(i)$ and a correct comparison sta	ated.

Question Number	Scheme	Marks
1. (a)	$[P(X > \mu - a)] = \underline{0.65}$	B1 (1)
(b)	$[P(\mu - a < X < \mu + a)] = 1 - 2 \times 0.35 \text{ or } "0.65" - 0.35 \text{ or } 0.15 + 0.15 = \underline{0.3}$	M1 A1 (2)
(c)	$[P(X < \mu + a X > \mu - a)] = \frac{"(b)"}{"(a)"} = \frac{0.3}{0.65}$	M1
	$= \frac{6}{13} \qquad (Allow awrt 0.462)$	A1 (2)
	Notes	[10tal 5]
(a)	B1 for 0.65 NB you may see $P(Z < 0.35) = 0.6368$ which is of course B0	
(b)	M1 for a correct numerical expression, ft their answer to part (a) [M0 for a pr A1 for 0.3 (Answer only scores both marks)	obability < 0]
(c)	M1 for a correct ratio of probabilities or follow through their answers provide A1 for $\frac{6}{13}$ or an exact equivalent and allow awrt 0.462	ed (b) < (a)

IAL Statistics 1 (WST01) – October 2016

Ouestion	Scheme	Marks
$\frac{2}{3}$, (a)	(25-33)	
	[Let J = the length of a jump] $P(J < 2.5) = P\left(Z < \frac{2.5 - 5.5}{0.6}\right)$	M1
	= P(Z < -1.333) = 1 - 0.9082	dM1
	= <u>0.0912 ~ 0.0918</u>	A1
		(3)
(b)	$[P(L > d) - 0.4 \rightarrow 1] d - 3.3 - 0.2523$	N/1 A 1
	$\begin{bmatrix} \Gamma(3 > a) - 0.4 \implies \end{bmatrix} = \frac{-0.2555}{0.6}$	MI AI
	$d = awrt \ 3.452$	A1
		(3)
(c)	$\left[P(J > m \mid J > d) \Longrightarrow \right] \frac{P(J > m)}{0.4} = 0.5 \text{or} P(J > m) = 0.2$	M1
	$\frac{m-3.3}{0.6} = 0.8416$	M1
	So $m = 3.80496$ (calc 3.80497274) awrt 3.80	A1
		(3)
(d)	P(J > 4.1) = 0.0918 (same as (a))	B1ft
	So P(certificate) = $0.4 \times$ "(a)"	M1
	$= 0.036 \sim 0.037$	A1
		(3)
		(12 marks)
	Notes	
(a)	1^{st} M1 for standardising with 2.5, 3.3 and 0.6 Allow \pm	
	2^{nd} M1 dep on 1^{st} M1 for attempting $1 - p$ where 0.5	
	A1 for an answer in the range 0.0912~0.0918 NB calc gives 0.09121	128
(b)	M1 for standardising with a^{-1} , 3.3 and 0.6 and setting equal to z (0.2)	z < 0.3
	a A1 for a conflict equation with compatible signs with $z = 0.25$ of beth or 0.2533	el, I.e. 0.233
	2^{nd} A1 for awrt 3.452 (calc gives 3.45200856 use of 0.2533 gives 3.44	5198)
	2 111 101 uvit 5.152 (cute gives 5.15200050 use 01 0.2555 gives 5.16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(c)	1 st M1 for a correct probability statement involving ' J ' and ' m '(median)	only (may be
	implied by 2^{nd} M1). Use the letter in the standardisation as the or	ne
	representing the median.	
	2^{nd} M1 for $m-3.3$ = (with compatible signs) where $0.84 < = 0.85$	
	2 M1 for $\frac{1}{0.6} = 2$ (with compatible signs) where $0.64 \le 2 - 0.85$	
	A1 for awrt 3.80 (accept 3.805)	
(d)	Bift for an answer in range $0.0912 \sim 0.0918$ or the same as part (a) for .	P(J > 4.1)
	IVI1 IOF U.4× their $P(J > 4.1)$ for any varianthe range 0.026 0.027 (Nie fractions)	
	A1 IOF answer in the range $0.050 \sim 0.057$ (NO fractions)	
	$100 \ 0.4 \times 0.0916 - 0.030/12 \ \text{and} \ 0.4 \times 0.0912 = 0.03048$	
	M1 for $0.4 \times$ their P(J > 4.1) A1 for answer in the range $0.036 \sim 0.037$ (No fractions) NB $0.4 \times 0.0918 = 0.036712$ and $0.4 \times 0.0912 = 0.03648$	

Question	Scheme	Marks
Number		
7(a)(i)	$P(X > 505) = P\left(Z > \frac{505 - 503}{1.6}\right)$	M1
	= 1 - P(Z < 1.25) = 1 - 0.8944 = 0.1056 awrt <u>0.106</u>	M1 A1
		(3)
(11)	$P(501 < X < 505) = 1 - 2 \times 0.1056 \text{ or } 0.8944 - 0.1056$ = 0.7888 awrt <u>0.789</u>	MI A1
(b)	$P(X < w) = 0.9713$ or $P(X > w) = 0.0287$ (may be implied by $z = \pm 1.9$)	(2) M1
	w = 503 (1006 - w) - 503	
	$\frac{1.6}{1.6} = 1.9$ or $\frac{(-1.6)}{1.6} = -1.9$	M1
	w = 506.04 awrt <u>506</u>	A1
	502	(3)
(c)	$\frac{r-503}{r} = -2.3263$	M1A1
	q r + 6 - 503	
	$\frac{1}{q} = 1.6449$	M1A1
	1.6449q - 6 = -2.3263q	ddM1
	q = 1.51 awrt <u>1.51</u>	A1
	<i>r</i> = 499.48 awrt <u>499</u>	A1 (7)
		(7) Total 15
	Notes	
(a)(i)	1 st M1 standardising with 505, 503 and 1.6. May be implied by use of 1.25 (Allow	±)
	2^{nd} M1 for 1 – P(Z < 1.25) i.e. a correct method for finding P(Z > 1.25), e.g. 1 – p where 0.5 < p < 0.99	
(ii)	M1 1 – 2 × their(i)	
(b)	1 st M1 for using symmetry to find the area of one tail (may be seen in a diagram)	
	2^{nd} M1 a single standardisation with 503, 1.6 and w (or $1006 - w$) and set = $\pm z$ val	ue $(1.8 < z)$
	< 2)	es $0/3$ but
	506.0with no working send to review)	cs 0/5, out
(c)	1 st M1 $\frac{r-503}{a} = z$ value where $ z > 2$	
	r = 503 and $r = 2.2262$ (signs must be compatible)	
	q = awrt - 2.5265 (signs must be compatible)	
	$2^{nd} M1 \frac{r+6-503}{a} = z \text{ value where } z > 1$	
	2 nd A1 $\frac{r+6-503}{r}$ = awrt 1.6449 (signs must be compatible)	I
	<i>9</i> Special Case: Less than 4dp z-values: use of awrt 2 32/2 33/2 34 and awrt 1 64/1 6	55 could
	score M1 A0 M1 and then A1 provided both equations have compatible signs.	e coula
	3^{rd} M1 (dep on both Ms) attempt to solve simultaneous equations leading to a value 3^{rd} A1 for over 1.51	e for q or r
	4 th A1 for awrt 499 (allow 499.5)	

Question	Scheme	Marks
5.(a)		
		B1 dB1
(b)	$P(X > 70) = P\left(Z > \frac{70 - 55}{20}\right)$ = P(Z > 0.75)	(2) M1
	=1-0.7734=0.2266 awrt <u>0.227/22.7%</u>	M1A1
(c)	P(X > b) = 0.01	(3)
(0)	$\frac{b-55}{20} = 2.3263$	M1B1
	<i>b</i> = 101.526 **Given answer 102**	A1
		(3)
(d)	P(70 < X < m) = 0.1315 P(X < m) - P(X < 70) = 0.1315	M1
	$P\left(Z < \frac{m-55}{20}\right) = 0.9049$	
	$\frac{m-55}{1} = 1.31$	M1B1
	$\frac{20}{m-81.2}$	Δ1
	m = 61.2	(4)
		Total 12
	Notes	
(a)	1 st B1 for a reasonable sketch of a symmetric, bell shaped curve which does not gross the x axis (ignore any vertical axis drawn)	
	2^{nd} B1 dependent on previous B1 for 55 labelled at the centre of the <i>x</i> -axis	
(b)	1^{st} M1 for standardising with 70, 55, 20 (allow +/-) 2^{nd} M1 Use of $1 - p$ (must be a probability so $1 - 0.67$ is M0)	
	A1 awrt 0.227 or 22.7% M1 for standardiging with 55, 20 and equating to z value $ z >2$	
(0)	B1 for 2.3263 (or better) used and compatible sign with their standardisation. A1 for awrt 102 which must some from a 7 value in the range 2.32 $\leq 7 \leq 2.34$	
	AT for awre 102 which must come from a 2-value in the range $2.52 \ge 2 \ge 2.54$	
(d)	1 st M1 for a correct expression for $P(X < m)$ (e.g. 0.1315 + '0.7734') <u>or</u> $P(X > m) = 0.0951$ <u>or</u> sight of 0.9049 (may be implied by sight of 1.31) 2 nd M1 for standardising with 55, 20 and equating to a <i>z</i> -value $ z >1$ B1 1.31 (1.31018from calc) used and compatible sign with their standardisation A1 awrt 81.2	on.

Question	Scheme	Marks
7. (a)	$[P(D > 50) =] P\left(Z > \frac{50 - 32}{12}\right)$	M1
	=1-P(Z<1.5) or $1-0.9332$	M1
	= awrt <u>0.0668</u> or 6.68%	Alcso
(b)	P(D > d) = 0.191 + 0.0668 = 0.2578 or $P(D < d) = 0.7422$	(3) B1
	$\frac{d-32}{12} = 0.65$ (calc gives 0.65014 or 0.65012)	M1A1
	d = 39.8	A1 (4)
(c)	$0.0668 \times 0.191^2 = 0.0024369$	M1
	[]×3	M1
	= 0.00731079 = awrt <u>0.0073</u>	A1
		(3) [10]
	Notes	
(a)	1 st M1 for standardising with 50, 32 and 12. Allow \pm 2 nd M1 for 1 – P(Z < 1.5) seen i.e. a correct method for finding P(Z > 1.5) e.g. 1 – t	ables value
	Alcso for awrt 0.0668 with both Ms scored and no incorrect working seen.	ables value
	Condone incomplete notation and condone use of different letters for Z .	
(b)	B1 for awrt 0.2578 (calc = 0.257807) or awrt 0.7422 (calc = 0.742192) may be implied by $z = awrt 0.65$	
	M1 for standardising with 32 and 12, i.e. $\pm \frac{d-32}{12}$ (equating to a probability is M	0)
	1^{st} A1 for z = awrt 0.65 and a correct equation in <i>d</i> (with compatible signs) 2^{nd} A1 for awrt 39.8	
(c)	1 st M1 for 0.0668×0.191^2 or sight of awrt 0.0024 (may be seen embedded in part an expression, e.g. ' $n \times 0.0668 \times 0.191^2$ ') (condense 6.68% × 10.1% × 10.1% if the final answer given is < 1)	of
	2^{nd} M1 for any expression of the form $3na^2$ where <i>n</i> and <i>a</i> are both probabilities	
	A1 for awrt 0.0073 allow awrt 0.73% but 0.73 is A0	

Question Number	Scheme	Marks
7. (a)	$P(G > 174) = P(Z > \frac{174 - 180}{10}) = P(Z > -0.4), = 0.6554$ awrt <u>0.655</u>	M1, A1
		(2)
(b)	P(k < G < 174) = P(G < 174) - P(G < k)	N/1
	P(G < k) = (1-0.6554') - 0.3196 or $P(G > k) = 0.6554' + 0.3196$ [=0.975]	NI I
	$P(Z < \frac{k - 180}{15}) = 0.025 \Longrightarrow \frac{k - 180}{15} = -1.96$	M1 B1
	awrt <u>150.6</u>	A1
		(4)
(c)(i)	$P(G > w) = P(B < w) \Longrightarrow \frac{w - 180}{15} = -\frac{w - 216}{30}$	M1 A1
	$\Rightarrow 45w = 8640 \Rightarrow \qquad w = \underline{192}$	A1
(ii)	$P(G > w) = P\left(Z > \frac{"192"-180}{15}\right) \text{ or } P(B < w) = P\left(Z < \frac{"192"-216}{30}\right)$	M1
	P(Z > 0.8) = 1 - 0.7881 = 0.2119 $p = awrt 0.212$	A1
		(5)
	Notes	
(a)	M1 for standardising 174 with 180 and 15 and selecting correct region i.e. P(> -0.4) o.e.
	Just $Z = -0.4$ is M0 unless indicate with > or diagram which region(use of tables 1	may be wrong)
	A1 awrt 0.655 do not isw [Final answer of awrt 0.655 scores M1A1]	
(b)	1 st M1 for a correct expression for $P(G < k)$ (may be seen in diagram or implied) <u>or</u> a correct
	expression for $P(G > k)$ ft their "0.6554" from (a). Probability for G may be	standardised
	2^{nd} M1 for standardising k with 180 and 15 and equating to a z-value $ z > 1.5$	
	B1 for (±) 1.96 or better (used as their z value) NB $\frac{k-180}{15} = -1.96$ will imply M1M1B1	
	A1 for awrt 150.6 (must come from a correct equation)	
(c)(i)	M1 for standardising <i>w</i> with 180 and 15 <u>and</u> 216 and 30 (allow <u>+</u>)	
	1 st A1 for equating standardisations with correct signs	
	2 nd A1 for 192	
(ii)	M1 for correct standardisation of $G > w$ with '192', 180 and 15 or $B < w$ with '192', 2	216 and 30
	A1 for awrt 0.212	

Question Number	Scheme	Marks
6. (a)	98% (Condone 0.98)	B1
		(1)
(b)	$z = \pm 2.3263$ (or better: calculator gives 2.326347877)	B1
	256-250 2 2262	M1
	$\sigma = 2.5205$	
	$\sigma = 2.579$ <u>awrt 2.58</u>	A1
		(3)
(c)	$[P(X < 246 \cup X > 254) =]$	
	$2 \times P\left(Z > \frac{254 - 250}{"2.579"}\right) \underline{\text{or}} 1 - P\left(\frac{246 - 250}{"2.579"} < Z < \frac{254 - 250}{"2.579"}\right)$	M1
	$= 2 \times P(Z > 1.55)$ or $1 - P(-1.55 < Z < 1.55) = 0.12(12)$	A1
	P(both bags outside range) = $(0.1212)^2$ =, 0.01468 <u>awrt 0.0146/7</u>	dM1, A1
		(4)
		[8 marks]
	Notes	
(b)	B1 for \pm 2.3263 or better seen and used, can be with σ^2 (may be implied by σ	= awrt 2.579)
	M1 for standardising with 256 or 244, 250 and σ and equating to a z-value $ z > 1$	2
	A1 for awrt 2.58 from correct working.	
<i>z</i> = 2.33	Use of $z = 2.33$ leads to $\sigma = 2.575$ can score B0M1A1	
<i>z</i> = 2.32	Special case: use of $z = 2.32$ from tables gives 2.586 $\sigma = $ awrt 2.59 can score	B0M1A1
Ans only	B1M1A1 can be awarded for sight of at least σ = awrt 2.5791 or awrt 2.5792	
(c)	1 st M1 for attempt to find sum of the area above 254 and below 246 or $2 \times area$	above 254
	or 2 × area below 246 (2 × needed) Allow ft of their σ (provided $\sigma > 0$)
	1^{st} A1 for awrt 0.12 (NB 1 – 0.1212 = 0.8788 is A0 here and 1^{st} M0 too)	
	2^{nd} dM1 for p^2 dependent on previous M1	
	2 nd A1 for awrt 0.0146 (use of calculator value) or 0.0147	
SC	'B1' for those who use 1 tail only and get 0.06 but then do $(0.06)^2$ Score as	M0A0M1A0
~~~	Do <b>not</b> award for $2 \times (0.06)^2$ or $3 \times (0.06)^2$	

Question Number	Scheme	Marks
<b>5.</b> (a)	$\left[ P(H < 18) = \right] P\left( Z < \frac{18 - 22}{10} \right) = P(Z < -0.4)$	M1
	= 1 - 0.6554 = 0.3446 or awrt <u>0.345</u>	dM1 A1 (3)
(b)	P(H > 50) = P(Z > 2.8) = 1 - 0.9974 = 0.0026 P(H > 39) = P(Z > 1.7) = 1 - 0.9554 = 0.0446 P(H > 50)  "0.0026"	M1 A1 A1
	$P(H > 50   H > 39) = \frac{\Gamma(H > 50)}{P(H > 39)}  \underline{\text{or}}  \frac{0.0020}{"0.0446"}$	M1
	$= 0.057 \sim 0.0585$	A1 (5)
(c)	$\frac{18-\mu}{\sigma} = -0.8416$ $\frac{28-\mu}{\sigma} = 1$	M1B1A1
	Solving: $10 = 1.8416\sigma$	M1
	$\sigma = awrt \frac{5.43}{\mu} = awrt 22.57$	Al Al
		(6)
	Notes	[14 marks]
(a)	1 st M1 for standardising with 18, 22 and 10. Allow + $\frac{18-22}{10}$	
	2 nd dM1 dependent on 1 st M1 for $1 - p$ where $0.6A1 for 0.3446 or better or awrt 0.345. NB Calculator gives 0.3445783$	Ans only 3/3
(b)	1 st M1 for correct standardisation and $1 - q$ (where $q = 0.9$ ) for one of thes 1 st A1 for 0.0026 or better (calc 0.0025551) or $1 - 0.9974$ (or better)	e probs
	$2^{nd}$ A1 for 0.0446 or better (calc 0.0445654) or $1 - 0.9554$ (or better) $2^{nd}$ M1 for a correct ratio of probability expressions or values (ft their 0.0026 and 0.0446 but if num. > denom. then M0)	
	$3^{rd}$ A1 for answer in the range 0.057~0.0585. No fractions but $\frac{13}{223}$ can score N	M1A1A1M1A0
Ans. only	Can score full marks for either awrt 0.0583 (tables) or awrt 0.0573 (c	alc) only
(c)	1 st M1 for attempt to standardise with $\mu$ , $\sigma$ and 18 or 28 and set equal to a <i>z</i> value (±) The <i>z</i> values should be in the range (0.8, 0.9) for "18" and (0.95, 1.05) for "28"	
	B1 for using $z = 0.8416$ or better (allow <u>+</u> ) Calculator gives 0.8416212 1 st A1 for both equations with <u>+</u> 1 and <u>+</u> 0.84 or better	
SC	for $\frac{28-\mu}{\sigma} = \pm 0.8416$ and $\frac{18-\mu}{\sigma} = \pm 1$ award M1B1A0 (0.84 instead of 0.	8416 loses B1)
	$2^{nd}$ M1 for solving their linear equations in $\mu \& \sigma$ . Reducing to an equation i Correct processes allow one sign slip	n one variable.
	2 nd A1 for $\sigma$ = awrt 5.43 3 rd A1 for $\mu$ = awrt 22.57	
Calc	No z = 0.8416 or better seen: can award 6/6 for $\sigma$ = awrt 5.4300 or 5.4301 and $\mu$	= awrt 22.57
No working	For $\sigma$ = awrt 5.43 and $\mu$ = awrt 22.57 award M1B0A1M1A1A1 i.e. 5/6	

7. (a)	$P(W > 92) = P(Z > \frac{92 - 99}{3.6})$	M1	
	= $P(Z > -1.94)$ or $P(Z < 1.94)$ = 0.9738 awrt <u>0.974</u>	A1 A1 (3)	
<b>(b)</b>	P(W < k) = 3P(W > k) so $P(W < k) = 0.75$ or $P(W > k) = 0.25$	B1 (5)	
	$\frac{k-99}{3.6} = 0.67$	M1 B1	
	( <u>k =) 101.4</u>	A1cao (4)	
(c)	k is the upper quartile	B1 (1)	
(d)	$P(W < P_{20}) = 0.2$	(1)	
	$\frac{116-120}{\sigma} = -0.8416$	M1 B1	
	$\sigma = 4.7528517$ awrt <u>4.75</u>	A1 (2)	
		(3) (11 marks)	
	Notes		
(a)	<ul> <li>M1 for standardising with 92, 99 and 3.6</li> <li>1st A1 for either correct probability statement and z awrt ± 1.94(may be seen as a correct shading on a diagram).</li> <li>2nd A1 for event 0.074</li> </ul>		
NB	They may get $z = 1.945$ and round to 1.95 leading to 0.9744 (score M1A0A1)		
(b) NB	1 st B1 for $P(W < k) = 0.75$ or $P(W > k) = 0.25$ (o.e.)[May be implied by $k = awrt 101.4$ ] B0M1B1A1 is possible if an incorrect statement e.g. $P(W < k) = 0.25$ is seen M1 for an attempt to standardise with $k$ (or any letter), 99 and 3.6 and set equal to $\pm a z$ -value in range 0.6 ~0.7 2 nd B1 for $\pm 0.67$ or better i.e. $z$ in 0.670 ~ 0.678 (calc gives 0.674489) NB e.g. 0.68 is B0 but could score A1. A1cao for 101.4 ( <b>must be given to 1dp</b> ) and must follow from compatible signs		
Ans. only	If z value not given and a value in [101.41, 101.43] is seen score B1M1B1 otherwise B1M1B0 for awrt 101.4 (and A1 when 101.4 given as final answer)		
(c)	B1 for Upper quartile (allow $Q_3 \text{ or third quartile } \underline{\text{or } 75^{\text{th}} \text{ percentile}})$		
(d)	<ul> <li>M1 for an attempt to standardise and set equal to ± a z-value in 0.8~0.9</li> <li>B1 for ± 0.8416 or better (calc gives 0.84162123). Value must be <u>used</u> as a z value NB 0.84 scores B0 but see SC</li> <li>A1 for awrt 4.75 following from an equation with compatible signs</li> </ul>		
SC	If they use $z = 0.84$ and get an answer of awrt 4.76 (with correct working) score M1B0A1		

Question Number	Scheme		Marks	
6. (a)	$\left[X \sim N(1.04, 0.17^2)\right]$			
	$P(X < 1) = P\left(Z < \frac{1 - 1.04}{0.17}\right)$		M1	
	= P(Z < -0.23529) = 1-0.5948 = 0.4052	(Accept 0.405-0.407)	M1A1 (3)	
(b)	$P(Y < 1) = 0.05$ $\left[ Y \sim N(\mu, 0.17^2) \right]$		(5)	
	$\frac{1-\mu}{0.17} = -1.6449$		M1 B1	
	$\mu = 1 + 1.6449 \times 0.17 = 1.2796 \dots$	awrt 1.28	A1	
	$P(S < 1) = 0.01 \qquad \left[ S \sim N(1.04 \ \sigma^2) \right]$		(3)	
(C)	$\frac{1-1.04}{\sigma} = -2.3263$		M1B1	
	$\sigma = \frac{0.04}{2.2263} = 0.0171946$	awrt 0.0172	A1	
	2.3203		(3) Tatal 0	
	Notes		101819	
(a)	$1^{st}$ M1for attempting to standardise with 1, 1.04 and 0.17Allow $\pm$ $2^{nd}$ M1for attempting $1 - p$ where $(0.5 A1for answers in the range 0.405 ~ 0.407 (Calc gives 0.4069902)$			
(b)	<ul> <li>Allow any alternative letters to μ and σ in parts (b) and (c)</li> <li>M1 for an attempt to standardise (allow ±) with 1, 0.17 and μ and set = ± any z value ( z  &gt; 1)</li> <li>B1 for z = ± 1.6449 (or better. Calc gives 1.6448536) used as a z value. Do not allow 1 – 1.6449 [May be implied by answer that rounds to 1.2796]</li> <li>A1 for awrt 1.28 (can be scored for using a z value of 1.64 or 1.65) Must follow from correct working but a range of possible z values are OK</li> </ul>			
Ans only	If answer is awrt 1.28 score M1B0A1 (unless of course $z = 1.6449$ seen) but awrt 1.2796 scores 3/3			
(c)	M1 for an attempt to standardise with 1, 1.04 and $\sigma$ and set = $\pm$ any z value ( $ z  > 2$ ) B1 for $z = \pm 2.3263$ (or better) (Calc gives 2.3263478) used as a z value If B0 scored in (b) for using a value in [1.64, 1.65] but not 1.6449 or better, allow awrt 2.32 or 2.33 here A1 for awrt 0.0172 Must follow from correct working but a range of possible z values are OK			
Ans only	If answer is awrt 0.0172 score M1B0A1 (unless of course $z = 2.3263$ or better is seen) If B1 scored in (b) and $z = 2.3263$ or better is <u>not</u> seen here then require an answer in the range 0.17194 < $\sigma$ < 0.17195 to award 3/3			

Question Number	Scheme		
5.(a)	$H_0: p = 0.35$ $H_1: p > 0.35$	B1	
	$V \sim B(40, 0.35)$ $P(V \ge 18) = 1 - P(V \le 17)$ or $P(V > 19) = 0.0699$	M1	
	$= 1 - 0.8761 \qquad P(V > 20) = 0.0363$		
	$= 0.1239 \qquad CR  V > 20$	A1	
	Accept H ₀ or not Significant or 18 does not lie in the critical region	M1d	
	There is insufficient evidence that the <b>proportion/amount/number</b> /		
	percentage of customers who bought organic vegetables has increased.		
<b>(b)</b>	$E \sim B(50, 0.35)$	M1	
	$P(E \le 10) = 0.0160$ $P(E \ge 25) = 0.0207$		
	$P(E \le 11) = 0.0342$ $P(E \ge 24) = 0.0396$		
	$CR \ E \le 10 \qquad \qquad E \ge 25$	A1A1 (3)	
(c)	The <b>manager's claim</b> is supported or		
	there is sufficient evidence that the proportion of customers buying organic <b>eggs</b> is different from those buying organic <b>vegetables</b> .		
(d)	0.016 + 0.0207 = 0.0367 or 3.67% awrt 0.0367 or 3.67%	B1 (1)	
(e)	<i>F</i> ~N(40, 32)	M1 A1	
	$P(F < n) = P\left(Z < \frac{n - 0.5 - 40}{\sqrt{32}}\right)$		
	$\frac{n - 0.5 - 40}{\sqrt{32}} = -1.68$		
	<i>n</i> = 31	Alcso (6)	
	Notes	Total 16	
(a)	B1 both hypotheses correct with p or $\pi$ M1 writing or using $V \sim B(40, 0.35)$ and $1 - P(V \le 17)$ or $P(V \le 17) = 0.8761$ or awrt 0.124 OB writing $P(V \ge 10) = 0.0(20)$ or $P(V \ge 20) = 0.02(21)$ or $P(V \le 17) = 0.8761$ or awrt 0.124		
	Al awrt 0 124 or $V \ge 20$ or $V > 19$ allow any letter		
	M1d dep on previous M being awarded. ft their CR or probability. A correct	statement -	
	do not allow contradicting non-contextual comments		
	A1 cso all previous marks must be awarded. A correct statement in context.	Need	
	<b>Bold words.</b> NB award M1A1 for a correct contextual statement on its own.	If there are	
<b>(b)</b>	no hypotheses or they are the wrong way around, then MUAU M1 writing $E = P(50, 0.25)$ or a correct probability or one tail of the CP corr	aat	
(0)	At $F \le 10$ as $A_1$ $F \ge 25$ as allow any latter Condone missing latter		
	<b>NB</b> If CR written as probabilities and both are correct or CR written as $10 > R$	2>25 oe	
	award M1A1A0. If just give CV 10 and 25 given award M1A0A0		
(c)	B1 A correct statement including the words <b>managers claim</b> or <b>eggs</b> and <b>vegetable</b> (s)		
	(or veg) ft their 2 tail CR. Cannot be awarded if no CR given in (b)		
(e)	M1 writing/using normal approximation with mean $= 40$		
	A1 writing/using normal approximation with mean = $40$ and var = $32$		
	M1 $\pm \left(\frac{(n \text{ or } n-0.5 \text{ or } n+0.5)-their mean}{their sd}\right)$ If no mean or sd given they must be correct here.		
	M1 dep on previous method mark being awarded. Using continuity correction $n - 0.5$		
	<b>B1</b> $\pm$ 1.68 <b>A1</b> 31 cso all previous marks must be awarded.		
	<b>NB</b> 31 with no working gains no marks		

5(a)	$P(M < 10) = P\left(Z < \frac{12 - 14}{\sigma}\right) = 0.1$		
	$\Rightarrow \frac{12-14}{\sigma} = -1.2816$	M1 standardising ( $\pm$ ) with 12, 14 and $\sigma$ and setting equal to a <i>z</i> value where $ z  > 1$ B1 $\pm 1.2816$ or better	M1
	$\sigma = 1.5605$ =awrt 1.56 minutes	A1 awrt 1.56 Do not allow answer written as an exact fraction.	B1 A1 (3)
(b)	<i>T</i> represents number less than 12 minutes. $T \sim B(15, 0.1)$	<b>B1</b> Writing or using B(15, 0.1).	B1
	$P(T \le 1)$	M1 writing $P(T \le 1)$ or $P(T < 2)$ any letter may be used.	M1
	= 0.549	A1 awrt 0.549	A1
		<b>NB</b> 0.549 gets B1 M1 A1	(3)
(c)	[ $T \sim$ number of people who take less than 12 mins to complete the test] $T \sim B(n, 0.1)$		
	<i>T</i> can be approximated by N( $0.1n$ , $0.09n$ )	<b>B1</b> mean = $0.1n$ and Var = $0.09n$ oe may be seen in an attempt at standardisation	B1
	$P\left(Z < \frac{8.5 - 0.1n}{\sqrt{0.09n}}\right) = 0.3085$	M1 using a continuity correction either 8.5 or 7.5 in an attempt at standardised form. Allow 0.09 for sd.	M1
		<b>B1</b> a z value of awrt $\pm 0.5$	B1
	$\frac{8.5 - 0.1n}{\sqrt{0.09n}} = -0.5 \text{ or } \frac{8.5 - 0.1x^2}{0.3x} = -0.5$	M1 standardising using their mean and sd. (If these have not been given then they must be correct here) and one of 7.5, 8, 8.5, 9 or 9.5 and equal to a z value where  z  > 0.4. Allow any form	M1
		A1 A correct equation in any form. ISW. Do not allow if they have $0.3n$ rather than $0.3\sqrt{n}$	A1
	$ \begin{array}{l} 0.1n - 0.15\sqrt{n} - 8.5 = 0 \\ \sqrt{n} = 10 \end{array} $	M1 using either the quadratic formula or completing the square or factorising or any correct method to solve <b>their 3 term</b> <b>quadratic</b> . If they write the quadratic formula down then allow one slip. If no formula written down then it must be correct for their equation. May be implied by seeing 10 or 8.5. They must show working if the equation used is not correct. $2^{nd} A1$ awrt 10.0 – do not need to see <i>n</i> or $\sqrt{n}$ . Allow $n = 10$ May be implied by 100	M1A1
	<i>n</i> = 100	<b>3rd A1 cso</b> 100 If they have a second answer of 72.25 they must reject it to get this final mark.	A1cso (8)
			(Total 14)

Question Number	Scheme			
5.(a)	<i>n</i> is large and <i>p</i> close to $0.5$			
(b)	There would be no pea seeds left			
(c)	H ₀ : $p = 0.55$ H ₁ : $p \neq 0.55$	B1 (1)		
(d)	X~N(121, 54.45)	B1		
	$P(X \ge 134.5) = P\left(Z \ge \frac{134.5 - 121}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$ $= P(Z \ge 1.8295)$	M1M1A1		
	= 1 - 0.9664 = 0.0336/0.0337 $x = 135.96$	A1		
	Accept $H_0$ not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso (7)		
	<u>Alternative</u> X~N(99, 54.45)	B1		
	$P(X \le 85) = P\left(Z \le \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	M1 M1 A1		
	$= P(Z \ge 1.8295)$			
	= 1 - 0.9664 = 0.0336/0.0337 r = 107.5			
	Accept $H_0$ not in CR, not significant	M1		
	The <u>company's claim</u> is justified or <u>55%</u> of its pea seeds germinate	Alcso [11]		
(a)	$\frac{1}{10000}$ B1 accept $n > 50$ (or any number bigger than 50)			
(a)	B1 <i>n</i> close to 0.5			
	NB Do not accept $np > 5$ , $nq > 5$ .			
(b)	Must have the idea of no peas left. They must mention either pea or seeds.			
(c)	B1 both hypotheses correct. Must use p or $\pi$ and 0.55 oe. Accept the hypotheses	s in part (d).		
(d)	B1 correct mean and Var, may be seen in the standardiation formula as 121 and	$\sqrt{54.45}$ or		
	7.38 to 2dp or implied by a correct answer			
	M1 for attempting a continuity correction (Method 1:135/85 $\pm$ 0.5 / Method 2: $x \pm$ 0.5)			
	M1 for standardising using their mean and their standard deviation and using either			
	Method I [134.5, 135, 135.5, 85, 85.5 or 84.5 accept $\pm z$ .] Method 2 [ ( $x \pm 0.5$ ) and equal to a $\pm z$ value]			
	equal to $a \pm z$ value] 134.5 - 121.(85.5.00) = r - 0.5 - 121			
	A1 correct z value awrt ± 1.83 or $\pm \frac{154.5 - 121}{\sqrt{54.45}} \left(\frac{85.5 - 99}{\sqrt{54.45}}\right)$ or $\pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$			
	$\left(\pm \frac{x+0.5-99}{\sqrt{54.45}} = 1.96\right)$ or (allow 1.6449 if 1 tail test in (c))			
	A1 awrt 0.0336/0.0337 or awrt 136 (allow 126 if one tail test in (c)) or a comparison of			
	awrt1.83 with 1.96 (1.6449)			
	M1 A correct statement. Accept $H_0$ , oe if a 2-tailed test in (c), reject $H_0$ , oe if a 1-tailed test in (c) Allow for a correct contextual statement. Do not allow contradictions of non-			
	contextual statements.			
	A1 A correct contextual statement to include words in bold/underlined for a 2-tailed test.			
	<b>NB</b> if finding $P(X=135)$ they can get B1 M1 M1 A0 A0 M0 A0			