Paper: 1MA	Paper: 1MA1/1H					
Question	Working	Answer	Mark	Notes		
16		2(2 <i>n</i> -3)	C1	correct expansion of brackets to give at least 3 terms from $n^2-2n-2n+4$		
		even	C1	arrives at $n^2 - 2 - n^2 + 4n - 4$ oe		
Q1			C1	reduces to $2(2n-3)$ or $4n-6$		
			C1	for conclusion e.g. $2(2n-3)$ always even, $4n - 6$ is always even since both are even numbers, they are multiples of 2.		

Paper: 1MA1	Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance				
12	Statement supported by	B1	writing a general expression for an odd number eg $2n+1$	Could be $2n - 1$, $2n + 3$, etc				
Q2	algebra	M1	(dep) for expanding ("odd number") ² with at least 3 out of 4 correct terms	Note that $4n^2 + 4n + 2$ or $2n^2 + 4n + 1$ in expansion of $(2n + 1)^2$ is to be regarded as 3 correct terms				
		A1	for correct simplified expansion, eg $4n^2 + 4n + 1$					
		C1	(dep A1) for a concluding statement eg $4(n^2 + n) + 1$ (is one more than a multiple of 4)					

Paper: 1MA	Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance				
13 03	Proof shown	C2	for complete argument, eg $n(n-1)$ is the product of two consecutive integers and must be even as either n or $n-1$ must be even or gives correct reasoning for n odd and n even n odd: odd \times odd = odd and odd – odd = even n even: even \times even = even and even – even = even					
		(C1	or <i>n</i> odd: $(2n + 1)^2 - (2n + 1) = 4n^2 + 2n = 2(2n^2 + n)$ <i>n</i> even: $(2n)^2 - (2n) = 4n^2 - 2n = 2(2n^2 - n)$ for factorising, eg $n(n - 1)$ OR gives correct reasoning for <i>n</i> odd or <i>n</i> even OR gives a partial explanation using <i>n</i> odd and <i>n</i> even, eg odd ² - odd = even and even ² - even = even)					

Paper: 1MA1/3H							
Question	Answer	Mark	Mark scheme	Additional guidance			
15 Q4	proof	C1 C1 C1	for writing an expression for an odd number, eg $2n + 1$ or $2n - 1$ (assuming <i>n</i> is any integer) or states <i>n</i> is even and eg $(n + 1)$ or $(n + 3)$ as odd numbers for a correct expression of the form $(2n + 1)^2 - (2n - 1)^2$ expanded eg $4n^2 + 12n + 9 - (4n^2 + 4n + 1)$ or $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$ or $(2n + 1 + 2n - 1)(2n + 1 - (2n - 1))$ or when <i>n</i> is even and eg $(n^2 + 6n + 9) - (n^2 + 2n + 1)$ (= $4n + 8$) for a correct simplified expression as a multiple of 8 eg $8n + 8$ or $8n$ or when <i>n</i> is even and eg $4n + 8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	Expansion of $(2n-1)^2 - (2n+1)^2$ oe is acceptable			

Paper: 1MA1	Paper: 1MA1/3H						
Question	Answer	Mark	Mark scheme	Additional guidance			
15	Proof	M1	for correct expressions for two consecutive even numbers eg $2n$ and $2n+2$	$(2n)^{2} + (2n+2)^{2}$ = $4n^{2} + 4n^{2} + 8n + 4$ = $8n^{2} + 8n + 4 = 4(2n^{2} + 2n + 1)$			
Q5		M1	(dep M1) for expanding both expressions with at least one expansion fully correct eg $4n^2$ and $4n^2 + 4n + 4n + 4$ or for factorising both terms and intention to square correctly eg $(2n)^2$ and $2^2(n+1)^2$	Or $(2n)^2 + (2n-2)^2$ $= 4n^2 + 4n^2 - 8n + 4$ $= 8n^2 - 8n + 4 = 4(2n^2 - 2n + 1)$			
		A1	complete proof	Or $(2n)^2 + (2n+2)^2$ $= 4(n)^2 + 4(n+1)^2$ $= 4(n^2 + (n+1)^2)$			

Paper: 1MA1	Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance				
16 (a) Q6	Proof	M1	for expansion of $(2m + 1)^2$ or $(2n - 1)^2$, all 4 terms correct with or without signs (and no additional terms) or 3 out of 4 terms correct with signs, eg $4m^2 + 2m + 2m + 1$ or $4n^2 - 2n - 2n + 1$ or for correct expansion of $4(m + n)(m - n + 1)$ or $(m + n)(m - n + 1)$ eg $4m^2 - 4mn + 4m + 4mn - 4n^2 + 4n$ oe or $m^2 - mn + m + mn - n^2 + n$ oe or for $[2m + 1 + 2n - 1][(2m + 1) - (2n - 1)]$ for correct expression after expansion for $(2m + 1)^2 - (2n - 1)^2$ eg $(4m^2 + 4m + 1) - (4n^2 - 4n + 1)$ or $4m^2 + 4m + 1 - 4n^2 + 4n - 1$ oe $(= 4m^2 + 4m - 4n^2 + 4n)$ or for $[2m + 1 + 2n - 1][2m + 1 - 2n + 1]$	Note that, for example, $4m + 1$ is regarded as 3 terms in the expansion of $(2m + 1)^2$				
		C1	for a complete proof without any errors, eg uses difference of two squares to show that LHS = RHS or expands both sides and shows that LHS = RHS or expands and simplifies LHS and factorises convincingly to get RHS	Must see correct expression $4m^{2}-4n^{2}+4m+4n$ $=4[(m^{2}-n^{2})+(m+n)]$ $=4[(m+n)(m-n)+(m+n)]$ $=4(m+n)(m-n+1)$				
(b)	Yes (supported)	C1	for yes with explanation, eg $2m + 1$ and $2n - 1$ are odd numbers (for any positive integer value of m , n) and the right-hand side is a multiple of 4					

Paper: 1MA1/1H					
Question	Working	Answer	Mark	Notes	
17 Q7		Completes proof	M1 C1	Expands both expressions eg $\frac{1}{2}(n^2 + n + n^2 + n + 2n + 2)$ or $n^2 + n$ and $n^2 + n + 2n + 2$ or factorises $\frac{1}{2}(n+1)(n+n+2)$ Completes proof with explanation and reference to $(n+1)^2$	

Paper: 1MA	Paper: 1MA1/3H						
Question	Working	Answer	Mark	Notes			
19		Proof	M1	starts process to find point of intersection by substituting, eg $(10 + 2y)^2 + y^2 (= 20)$			
		(supported)	M1	for expanding, eg $4y^2 + 20y + 20y + 100$ (3 out of 4 terms correct)			
Q8			M1	(dep M2) for 3-term quadratic equation ready for solving, eg $5y^2 + 40y + 80 = 0$			
			M1 C1	(dep on previous M1) for method to solve an equation of the form $ay^2 + by + c = 0$, eg by factorising or correct substitution into quadratic formula fully correct method leading to $y = -4$ or $x = 2$ or $(y + 4)^2 = 0$ or $(x - 2)^2 = 0$ and statement, eg only one point of intersection so the line is a tangent to the circle			