	<u>Summer 2020 Paper 1 Q1</u>
1	The first five terms of an arithmetic sequence are
	·
	1 4 7 10 13
	1 4 / 10 13
	White derve an evenession in terms of a feath and terms of this secretary
	Write down an expression, in terms of n , for the n th term of this sequence.
	(Total for Question 1 is 2 marks)
	(Total for Question 1 is 2 marks)

Summer 2019 Paper 3 Q16

2	Here are the first six terms o	f a quad	ratic s	equence	.		
		-1	5	15	29	47	69
	Find an expression, in terms	of n , fo	r the r	<i>i</i> th term	of this	sequen	ce.
_						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	for Question 2 is 3 marks)
						(Total f	or Question 2 is 3 marks)
						(Total f	or Question 2 is 3 marks)

Autumn 2017 Paper 2 Q2	Autumn	2017	Paper	2	Q2.
------------------------	--------	------	-------	---	-----

3	α			. •		
3	S	1S	a	geometric	sec	iuence.
_	~			5	~	

(a) Given that $(\sqrt{x} - 1)$, 1 and $(\sqrt{x} + 1)$ are the first three terms of S, find the value of x. You must show all your working.

(3)

(b) Show that the 5th term of S is $7 + 5\sqrt{2}$

(2)

(Total for Question 3 is 5 marks)

4	Here are the first five terms	s of a seq	uence.				<u>Summer 2017 Paper 2 Q22</u>
		4	11	22	37	56	
	Find an expression, in term	ns of n , for	or the <i>n</i> th	term of the	is sequenc	ee.	
					(Total fo	or Question 4 is	s 3 marks)
					(10tai io	or Question 4 is	5 5 marks)

<u>Summer 2018 Paper 3 Q16</u>

5	The <i>n</i> th term of a sequence is given by $an^2 + bn$ where a a	and b	are integers		<u></u>
	The 2nd term of the sequence is -2 The 4th term of the sequence is 12				
	(a) Find the 6th term of the sequence.				
	Here are the first five terms of a different quadratic sequence	ce			(4)
	$0 \qquad 2 \qquad 6 \qquad 12$		20		
	(b) Find an expression, in terms of n , for the n th term of the	nis seg	uence.		
					(2)
		(Tota	l for Quest	ion 5 is 6 m	arks)

Summer 2020 Paper 2 Q16

6	Here are the first five terms of a	a quadr	atic seq	uence.			<u> </u>
		10	21	38	61	90	
	Find an expression, in terms of	<i>n</i> , for t	he <i>n</i> th t	erm of	this seq	uence.	
					(T		
					(101	tal for Question	o is 3 marks)

Summer 2020 Paper 2 Q19

7 A hot air balloon is descending.

The height of the balloon n minutes after it starts to descend is h_n metres.

The height of the balloon (n + 1) minutes after it starts to descend, h_{n+1} metres, is given by

$$h_{n+1} = K \times h_n + 20$$
 where K is a constant.

The balloon starts to descend from a height of 1200 metres at 0915 At 0916 the height of the balloon is 1040 metres.

Work out the height of the balloon at 0918

...... m
(Total for Question 7 is 4 marks)

Summer 2021 Paper 3 Q5 The first four terms of a Fibonacci sequence are 2*a* 3*a* 5*a* a The sum of the first five terms of this sequence is 228 Work out the value of *a*. (Total for Question 8 is 3 marks)

9	At the start of year n , the number of animals in a population is P_n
	At the start of the following year, the number of animals in the population is P_{n+1} where
	$P_{n+1} = kP_n$
	At the start of 2017 the number of animals in the population was 4000 At the start of 2019 the number of animals in the population was 3610
	Find the value of the constant k .
_	(Total for Question 9 is 3 marks)

<u>Autumn 2018 Paper 3 Q13</u>

10	The number of animals in a population at the start of year t is P_t . The number of animals at the start of year 1 is 400
	Given that
	$P_{t+1} = 1.01P_t$
	work out the number of animals at the start of year 3
	(Total for Question 10 is 2 marks)

		Autumn 2019 Paper 2 Q6
11	The <i>n</i> th term of a sequence is $2n^2 - 1$	
	The <i>n</i> th term of a different sequence is $40 - n^2$	
	Show that there is only one number that is in both of these sequences.	
	(Total for Question 1	1 is 3 marks)

Autumn	2019	Paper	2	Q22
--------	------	-------	---	-----

		<u> Autumn 2019 Paper 2 Q22</u>	
12	The number of rabbits on a farm at the end of month n is P_n . The number of rabbits at the end of the next month is given by $P_{n+1} = 1.2P_n$.	50	
	At the end of March there are 200 rabbits on the farm.		
	(a) Work out how many rabbits there will be on the farm at the end of June.		
		(3)	
	(b) Considering your results in part (a), suggest what will happen to the number		
	(b) Considering your results in part (a), suggest what will happen to the number rabbits on the farm after a long time.		
			·
		of	
		(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	
	rabbits on the farm after a long time.	(1)	

13	Here are the first five	e terms of a s	equence.				<u>Autumn 2019 Paper 3 Q20</u>
		-1	0	3	8	15	
	Find an expression, i	n terms of n ,	for the <i>n</i> th	term of thi	s sequence.		
					(Total for (Question 1	3 is 2 marks)
					·		

<u>Autumn</u>	2022	Paper	1	Q23	
---------------	------	-------	---	-----	--

14 Here are the first five terms of a geometric sequence.

 $\sqrt{5}$

10

 $20\sqrt{5}$

200

 $400\sqrt{5}$

(a) Work out the next term of the sequence.

(2)

The 4th term of a different geometric sequence is $\frac{5\sqrt{2}}{4}$

The 6th term of this sequence is $\frac{5\sqrt{2}}{8}$

Given that the terms of this sequence are all positive,

(b) work out the first term of this sequence. You must show all your working.

(3)

(Total for Question 14 is 5 marks)

4 =	11 4 6		1.1	·•			<u>Autumn 2022 Paper 2 Q3</u>
15	Here are the firs	t five terms of a	an arithme	tic sequen	ce.		
		7	13	19	25	31	
	(a) Find an expre	ession, in terms	of n , for the	ne <i>n</i> th term	n of this se	quence.	
							(2)
	The <i>n</i> th term of a	different seque	ence is 8 –	- 6n			
	(b) Is -58 a term						
	You must sno	w how you get	your answ	er.			
							(2)
					(Total	for Questio	n 15 is 4 marks)

	Autumn	2022	Paper	2	Q12
--	--------	------	-------	---	-----

16	The number of insects in a population at the start of the year n is P_n	<u> 1utumn 2022 Paper 2 Q12</u>
	The number of insects in the population at the start of year $(n + 1)$ is P_{n+1} where	
	$P_{n+1} = kP_n$	
	Given that k has a constant value of 1.13	
	(a) find out how many years it takes for the number of insects in the population to You must show how you get your answer.	double.
		(2)
	The value of k actually increases year on year from its value of 1.13 in year 1	
	(b) How does this affect your answer to part (a)?	
		(1)
	(Total for Question 16 is	
	· · · · · · · · · · · · · · · · · · ·	

Summer 2022 Paper 3 Q20

17 The profit made by a shop increases each year.

The profit made by the shop in year n is $\pounds P_n$

Given that the profit made by the shop in the next year is $\pounds P_{n+1}$ then

$$P_{n+1} = aP_n + 800$$
 where a is a constant.

The table shows the profit made by the shop in 2018 and in 2019

Year	2018	2019		
Profit	£24000	£29600		

Work out the profit predicted to be made by the shop in 2021

£

(Total for Question 17 is 4 marks)