Paper: 1MA	Paper: 1MA1/2H								
Question	Answer	Mark	Mark scheme	Additional guidance					
12	comparison shown	M1	for starting to manipulate equation, eg $5y = 10x + 15$ or $5y = 10x - 4$ or $y - 2x + \frac{4}{5} = 0$ or $y - 2x = 3$	Ignore constant terms for both marks					
Q1		A1	for statement and equation(s) which can be used to show that the gradients of the two lines are the same, eg $5y = 10x + 15$ and $5y = 10x - 4$ and both have the same x coefficient OR $y = 2x - \frac{4}{5}$ and both have a gradient of 2						

Paper: 1MA	Paper: 1MA1/2H								
Question	Answer	Mark	Mark scheme	Additional guidance					
9	Yes with comparisons shown	M1	for starting to manipulate equation eg $y = \frac{3}{6}x + \frac{7}{6}$ or $y = \frac{1}{2}x + \frac{7}{6}$ or $3y = \frac{3}{2}x - 6 \times 3$ or $6y = 3x - 36$	Ignore constant terms for both marks					
Q2		A1	for statement and equation(s) which can be used to show that the gradients of the two lines are the same eg $y = \frac{1}{2}x + \frac{7}{6}$ and both have a gradient of $\frac{1}{2}$ or Yes, $6y = 3x - 36$ and both have the same <i>x</i> coefficients						

Paper: 1MA1	/2H			
Question	Answer	Mark	Mark scheme	Additional guidance
3 03	y = 3x - 6	M1	for a correct method to find the gradient of the line, or $m = 3$ OR identifies -6 as the intercept in words or in a partial equation OR $y - b = m(x - a)$ where $m \neq 3$ and (a, b) is a correct coordinate	Just ringing –6 is insufficient
		M1	for $y = 3x + c$ or (L=) $3x - 6$ or $y = "3"x - 6$ OR $y - y_1 = 3(x - x_1)$ or $y - b = "3"(x - a)$ where (a, b) is a correct coordinate	Award of this mark implies the first M1 <i>c</i> must be seen either as a letter or a number
		A1	accept $y = 3x + -6$ oe	

Paper: 1MA	Paper: 1MA1/1H						
Question	Working	Answer	Mark	Notes			
6		comparison	M1	starts to manipulate expression e.g. $3y = 9x - 6$ or $3y = 9x - 5$			
Q4		-	A1	gives equation(s) which can be used to show that the gradients of the two lines are the same e.g. $y = 3x - 5/3$			

Paper: 1MA1	Paper: 1MA1/2H									
Question	Answer	Mark	Mark scheme	Additional guidance						
16	$y = -\frac{3}{4}x - \frac{11}{4}$	M1	for identifying gradient of $\frac{4}{3}$	Ignore constant term						
Q5		M1	for beginning a method to find the gradient of the perpendicular line eg $\frac{4}{3} \times m = -1$ or identifies gradient of perpendicular line as $-\frac{3}{4}$	Can ft providing gradient is clearly stated						
		A1	for $y = -\frac{3}{4}x - \frac{11}{4}$ or any equivalent equation	4y + 3x = -11 y + 5 = $-\frac{3}{4}(x-3)$						

Paper: 1MA1/1H									
Question	Answer	Mark	Mark scheme	Additional guidance					
15	$y = -\frac{1}{3}x + 8$	M1	for a method for finding the gradient of L ₂ eg use of $-\frac{1}{m}$ or $-\frac{1}{3}$						
06		M1	(dep) for substitution of (9, 5) into $y = "-\frac{1}{3}"x + c$						
		A1	for $y = -\frac{1}{3}x + 8$ oe	$y-5 = -\frac{1}{3}(x-9)$ gets M2A1					

Paper: 1MA1	Paper: 1MA1/2H								
Question	Answer	Mark	Mark scheme	Additional guidance					
6	7	P1	process to use gradient eg $y = 3x + c$ or $c = -6$ or $\frac{15 - 9}{d - 5}$	Condone use of a letter other than d , for d					
Q7		P1	or $(15 - 9) \div 3$ or $(6, 12)$ (dep) full process to rearrange equation formed to isolate <i>d</i>	Must show processes to get as far as $d =$					
		A1	eg rearrangement of $15 = 3a - 6$ or $5 = \frac{1}{d-5}$ or $1075 + \frac{1}{3}$ cao	Award P2 for an answer of (7, 15)					

Question Working Answer Mark Notes	Paper: 1MA1/1H						
Question working Answer Plank Notes							
19 $y = 2x + 36$ P1 starts process, eg by rearranging to find gradient, eg $y = 6 - \frac{x}{2}$ or $\frac{-1}{2}$ of and E	positions of <i>B</i>						
Q8 P1 complete process to find position of A or uses $\frac{-1}{m}$ to find the gradient o	`M						
P1 complete process to find equation of M							
A1 $y = 2x + 36$ oe							

Paper: 1MA	aper: 1MA1/2H								
Question	Working	Answer	Mark	Notes					
19		Proof	M1	for a method to find coordinates of $M(-1, -1)$ or $N(3, 1)$					
		(supported)							
			M1	for method to find gradient of MN or PR					
				or for method to find column vector for MN or PR					
				or for differences of x coordinates and differences of y coordinates for MN or PR					
09									
X ⁻			A1	for gradients of MN and PR , ie $\frac{1}{2}$ oe					
				or for column vectors of <i>MN</i> and <i>PR</i> , $\overline{MN} = \binom{4}{2}$ and $\overline{PR} = \binom{8}{4}$					
				or for differences of x coordinates and of y coordinates for MN and PR					
			C1	for conclusion from reasoning and correct working					

Paper: 1MA	per: 1MA1/1H						
Question	Working	Answer	Mark	Notes			
18		y = -2x + 21	P1	shows evidence of understanding that AC is perpendicular to DB , or states the gradient of DB as 0.5 oe			
Q10			P1	shows a process to find the gradient of a perp. line e.g. use of $-\frac{1}{m}$ or states $y = -2x + c$ or states the gradient of AC as -2			
			P1	(dep on P2) for sub. of $x = 5$, $y = 11$ into $y = mx + c$ where <i>m</i> is their found gradient for AC.			
			A1	oe			

Paper: 1MA1	Paper: 1MA1/1H									
Question	Answer	Mark	Mark scheme	Additional guidance						
6	(22, 20)	P1	for process to find width or height of diagram eg $38 - 6 (= 32)$ or $36 - 7 (= 29)$	Figures may be shown on the diagram						
		P1	for process to find length of side of square eg " 32 " \div 4 (= 8)							
011			or process to find half width of diagram eg " 32 " \div 2 (= 16)							
QII		P1	for process to find <i>x</i> coordinate eg $6 + 2 \times "8" (= 22)$ or $6 + "16" (= 22)$ or $(6 + 38) \div 2 (= 22)$	If $(6 + 38) \div 2$ leads to an answer other than 22, award P2 only						
		P1	for process to find y coordinate eg $36 - 2 \times "8" (= 20)$ or $36 - "16" (= 20)$ or $7 + "8" + "29" - 3 \times "8" (= 20)$							
		A1	cao SC: award 4 marks for (20, 22)	Award for P3 for (22, y) or (x, 20) or $x = 22$ or $y = 20$						

Paper: 1MA1	Paper: 1MA1/1H									
Question	Answer	Mark	Mark scheme	Additional guidance						
19	$b = \frac{2}{a}a + 2$	P1	for process to rearrange the equation to give y in terms of x							
	3		eg $y = \frac{7-3x}{2}$ or $y = -\frac{3}{2}x + (\frac{7}{2})$ or $m = -\frac{3}{2}$							
		P1	for using their gradient in $mn = -1$							
		P1	for showing a process to find the gradient of PQ eg $\frac{b-4}{a-3}$							
Q12			OR for substituting $x = 3$ and $y = 4$ in $y = \frac{2}{3}x + c$							
		P1	(dep P3) for forming an equation in <i>a</i> and <i>b</i> eg $\frac{b-4}{a-3} = \frac{2}{3}$ or $b = \frac{2}{3}a + 2^{2}$							
			OR correct equation in terms of x and y eg $y = \frac{2}{3}x + 2$	$y - 4 = \frac{2}{3}(x - 3)$ gets P4						
		A1	for $b = \frac{2}{3}a + 2$ oe	Accept 0.66 or 0.67 oe for 2/3						

Paper: 1MA1/3H					
Question	Answer	Mark	Mark scheme	Additional guidance	
12 (a)	1.5	M1	for method to find the gradient of the line, $eg \frac{12}{8}$	Must see use of scales.	
		A1	for 1.5 oe		
(b) Q13	Explanation	C1	Explanation relating to rate of change of volume with time, eg rate at which the container fills or change in number of litres per second or number of litres added per second	Ignore any quantities given. Award the mark for an explanation involving rate.	
(c)	Explanation	C1	Explanation relating to volume (amount) of liquid in the container at the start eg number of litres in the container when $t = 0$, amount of liquid in the container to start with		

Paper: 1MA	Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance		
12 (a)	-0.09	M1	for suitable method to find gradient, eg 27 ÷ 300	Any readings from the graph must be reasonable.		
		A1	for answer in the range -0.1 to -0.08 oe	Condone missing negative for with		
(b)		C1	for explanation	Can ft explanation linked to incorrect gradient in part (a)		
O14			Acceptable examples			
x			volume of petrol used each km			
			litres/km			
			Rate of fuel consumption			
			For every 9 litres you can travel 100 km			
			Not acceptable examples			
			volume ÷ distance			
			volume of petrol used per distance			
			km/litre			
			as distance increases volume decreases			

Paper: 1MA1	Paper: 1MA1/2H						
Question	Answer	Mark	Mark scheme	Additional guidance			
11 (a)	(9, 7.5)	M1	for x coordinate = $PO(6) \times \frac{3}{2}$ (=9) or y coordinate = $OQ(3) \times \frac{5}{2}$ (= 7.5) or $PO(6) \times \frac{5}{2}$ (=15) or $OQ(3) \times \frac{3}{2}$ (= 4.5)				
		A1	$\frac{2}{2} \left(\frac{1}{2} \right) = \frac{2}{2} \left(\frac{1}{2} \right) = \frac{2}{2} \left(\frac{1}{2} \right)$				
(b)	y = -2x + 3	PI	for process to find the gradient of the line, eg $3 \div 6$ (=0.5) or $y = mx + 3$	Could use P and R or Q and R as ft from (a)			
Q15		P1	for process to find gradient of perpendicular eg $-1 \div$ [gradient of PQ] (= -2)				
		A1	for $y = -2x + 3$ oe				

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	(9, 8)	P1 P1	for setting up an equation for one dimension (width) of the pattern eg $2b - a = 8$ oe or $2x + y = 8$ oe for setting up an equation for the other dimension (height) of the pattern eg $2b + a = 16$ oe or $2x + 3y = 16$ oe	<i>a</i> and <i>b</i> are the width and length <i>x</i> is the difference between the length and width, <i>y</i> is the width of the rectangle
016		P1	(dep P2) for a full process to solve for both variables eg $4b = 24$, $b = 6$ and $12 - a = 8$, $a = 4$ or $8 = 2y$, $y = 4$ and $8 = 2x + y$, $x = 2$	Both values correct implies this mark
QIU		P1	(dep P3) for a full process to find one of the coordinates of C eg $3 + 6 (= 9)$ or $4 + 4 (= 8)$ or $3 + 2 + 4 (= 9)$ or $4 + 4 (= 8)$	
		A1	cao	Award 0 marks for a correct answer with no supportive working.

Paper: 1MA1/2H						
Question	Answer	Mark	Mark scheme	Additional guidance		
¹⁸ Q17	$\left(\frac{-16}{5},\frac{48}{5}\right)$	P1 P1	for a method to find gradient of \mathbf{L}_1 eg $\frac{6-2}{4-12}$ (= - $\frac{1}{2}$) or states \mathbf{L}_2 as $y = -3x$ (dep on P1) for a method to find equation of \mathbf{L}_1 eg subs into $y = -\frac{1}{2}x + c$ OR states \mathbf{L}_1 as $y = -\frac{1}{2}x + 8$	Ignore sketches.		
		P1 A1	(dep on P2) complete method to equate both lines eg " $-\frac{1}{2}$ "x + 8 = $-3x$ oe	Accept equivalents eg $(-3.2, 9.6)$		

Paper: 1MA	Paper: 1MA1/2H						
Question	Answer	Mark	Mark scheme	Additional guidance			
25	9.75	P1	process to find the gradient of L $\left(=-\frac{3}{2}\right)$				
		P1	process to find the gradient of the perpendicular line M				
			eg use of $-\frac{1}{m}$ or states gradient as $\frac{2}{3}$				
018			or $y = \frac{2}{3}x + c$				
QIO		B1	(indep) gives y coordinate of $B = 8.5$ oe	Could be indicated other ways, eg 8.5 on the y axis of a diagram			
		P1	(dep P2) process to find x coordinate of $C (= 3)$ or y coordinate of $C (= 4)$ eg the first stage of solving equations or using elimination by substitution, to find a coordinate of C.	ft their linear equation for M with L; allow some error in manipulation of these linear equations as long as the overall process is correct.			
		A1	9.75 oe	Award 0 marks for a correct answer with no supportive working.			

litional guidance der eg $-3 - 4$ (= -7) and negative
der eg $-3 - 4 (= -7)$ and negative
·
1 by 10.5 or 12 or 17.5 or 20