Paper: 1MA1/1H								
Question	Answer	Mark	Mark scheme	Additional guidance				
	3n - 2	B2	for $3n - 2$ oe	Accept a different variable, eg. $3x - 2$				
QI		(ві	for $3n + k$ where $k \neq -2$ or is absent unambiguously shown)	n = 3n - 2 gets B1 only n + 3 gets NO marks				

Paper: 1MA1	Paper: 1MA1/3H							
Question	Answer	Mark	Mark scheme	Additional guidance				
16 Q2	$2n^2 - 3$	M1 M1	begins to work with 2^{nd} differences identifies $2n^2$ as part of the expression eg gives the sequence 2, 8, 18, 32, or gives a quadratic expression which includes the term $2n^2$	6 10 14 18 22 4 4 4 4 A quadratic expression of the form $2n^2 + bn + c$ can be awarded the first 2 marks				
		A1	oe					

Paper: 1MA	per: 1MA1/2H					
Question	Working	Answer	Mark	Notes		
23 (a)		2	M1	for start to express the common ratio algebraically,		
				eg 1/ $(\sqrt{x} - 1)$ or $(\sqrt{x} + 1)/1$ or $\sqrt{x} + 1 = k \times 1$ or $1 = k \times (\sqrt{x} - 1)$		
			M1	for setting up an appropriate equation in x, eg $1/(\sqrt{x} - 1) = (\sqrt{x} + 1)/1$		
Q3			C1	for convincing argument to show $x = 2$		
(b)		Shown	M1	for expressing the relationship between the common ratio, one of the first three terms of the sequence and the fifth term, eg 5 th term = 3^{rd} term × (common ratio) ²		
			C1	for a complete explanation to include eg, $(\sqrt{2}+1)(\sqrt{2}+1)^2 = 7 + 5\sqrt{2}$		

Paper: 1MA1/2H						
Question	Working	Answer	Mark	Notes		
²² Q4		$2n^2 + n + 1$	M1 M1 A1	for a correct start to a method to find <i>n</i> th term, eg. equal 2nd differences imply a term in n^2 or sight of $an^2 + bn + c$ for a method leading to $2n^2$ and either <i>n</i> or 1 for $2n^2 + n + 1$ oe		

Paper: 1MA1	Paper: 1MA1/3H							
Question	Answer	Mark	Mark scheme	Additional guidance				
16 (a)	42	P1	for process to find an equation in a and b, eg $a \times 2^2 + b \times 2 = -2$ ($4a + 2b = -2$) or $a \times 4^2 + b \times 4 = 12$ ($16a + 4b = 12$)					
Q5		P1	for process to find a pair of simultaneous equations and eliminate one unknown, eg $16a + 8b = -8$ and $16a + 4b = 12$ and subtraction or $16a + 4b = 12$ and $8a + 4b = -4$ and subtraction	Allow one arithmetic error in elimination, eg $16a + 8b = -8$ and $16a + 4b = 12$ leading to $4b = 20$ but no subtraction sign seen				
		A1 A1	for $a = 2$ and $b = -5$ cao					
(b)	$n^2 - n$	M1 A1	for correct method, eg n^2 seen as a term for $n^2 - n$ oe					

Paper: 1MA	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
16 Q6	$3n^2 + 2n + 5$	M1 M1	for a correct start to a method to find the <i>n</i> th term, eg equal 2nd differences imply a term in n^2 for working with $3n^2$, eg $3n^2$ and sequence 7, 9, 11,	Need to see constant second difference found and n^2 $3n^2 + 2n$ implies M2				
		A1	for $3n^2 + 2n + 5$					

Paper: 1MA	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
19	788.4	P1	for substituting values, eg $1040 = K \times 1200 + 20$					
		P1	for process to find <i>K</i> , eg $(1040 - 20) \div 1200$ oe (= 0.85)					
Q7		P1	for complete process, eg 0917: "0.85" × 1040 + 20 (= 904); 0918: "0.85" × "904" + 20					
		A1	for 788.4 or 788 or 789					

Paper: 1MA1	/3H			
Question	Answer	Mark	Mark scheme	Additional guidance
5	12	P1	for a process to find the fifth term, eg $3a + 5a$ (= 8a)	
		P1	for setting up the equation $eg a + 2a + 3a + 5a + [8a] = 228$	[8a] allow use of what is clearly indicated as the missing term
Q8				$\frac{\frac{228}{19}}{\frac{228}{1+2+3+5+[8]}} \text{ scores P1 P1}$
		A1	cao	

Paper: 1MA1	/3H			
Question	Answer	Mark	Mark scheme	Additional guidance
19	0.95	P1	for initial use of the formula eg $3610 = kP_n$ or $P_{n+1} = 4000k$ or for $P_{n+2} = k^2P_n$ or for $3610 = k^2 \times 4000$	Accept n or any integer replacement for n
Q9		P1	for a complete method to find k eg $\sqrt{\frac{3610}{4000}}$ or ± 0.95	This may be seen in steps
		A1	oe	

Paper: 1MA1/3H						
Question	Answer	Mark	Mark scheme	Additional guidance		
13	408	M1	for 1.01 × 400 (= 404) or 408.04 or 412.08	412(.08) on the answer line M1A0		
				1.01×400 may be seen as part of a calculation		
010		A1	cao			
QIU						

Paper: 1MA1	Paper: 1MA1/2H							
Question	Answer	Mark	Mark scheme	Additional guidance				
6	Shown	M1	for method to find at least two terms,	1 7 17 31 49 71 97 127 161 199				
	(supported)		eg $2 \times 4^2 - 1$ (= 31) and $40 - 3^2$ (= 31)	39 36 31 24 15 4 -9				
Q11		M1 A1	for generating at least three correct terms of each sequence for generating at least the terms 1, 7, 17, 31, 49 of the first sequence and at least the terms 39, 36, 31, 24, 15, 4 of the second sequence					

Paper: 1MA	Paper: 1MA1/2H								
Question	Answer	Mark	Mark scheme	Additional guidance					
22 (a)	163 or 164	P1	uses formula eg $1.2 \times 200 - 50$ (= 190)						
		P1	for complete process, eg May: $1.2 \times "190" - 50$ (= 178) and						
Q12			June: $1.2 \times "178" - 50 (= 163.6)$						
		A1	for 163 or 164						
(b)	Statement	C1	(dep P1) ft statement, eg there won't be any rabbits, fewer rabbits, decrease						

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
20 Q13	$n^2 - 2n$	M1	for correct deduction from differences, eg 2nd difference of 2 implies $1n^2$ or gives a quadratic expression which includes the term $1n^2$ or states 1,4,9,16,25 and deduces 2,4,6,8,10	
		A1	oe	

Paper: 1MA1	Paper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
23 (a)	4000	P1	for process to identify the common ratio,	May use any 2 consecutive terms			
			eg 400 $\sqrt{5}$ ÷ 200 (= 2 $\sqrt{5}$) or 200 ÷ 400 $\sqrt{5}$ (= $\frac{1}{2\sqrt{5}}$)				
			or for a process to find the next term of the sequence, eg $200 \times (200 \div 10)$				
Q14		A1	cao				
(b)	5	P1	for process to find the ratio of the 4th and 6th terms,				
			eg $\frac{5\sqrt{2}}{8} \div \frac{5\sqrt{2}}{4} (=\frac{1}{2})$ or $\frac{5\sqrt{2}}{4} \div \frac{5\sqrt{2}}{8} (=2)$				
			or for finding that the 2nd term is $\frac{5\sqrt{2}}{2}$				
		P1	for complete process to find 1st term, eg $\frac{5\sqrt{2}}{4} \div \left(\frac{1}{\sqrt{2}}\right)^3$				
		A1	cao	Award 0 marks for a correct answer with no supportive working			

Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance	
3 (a)	6 <i>n</i> + 1	B2	oe		
		(B1	for $6n + c$ where c is an integer $\neq 1$ or is missing)		
(b) Q15	Shown with supportive working	M1	for $8 - 6n = -58$ or $8 - 6 \times 11$ (= -58) or starts to list terms of the sequence, with at least 3 correct or any other valid method.	2, -4, -10, -16, -22, -28, -34, -40, -46, -52	
		A1	shown with working or an explanation , eg Yes and 11 or 2, -4 , -10 , -16 ,, -52 , -58	May stop at -58 or ring if sequence continues	

Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance	
12 (a)	6	M1	for an attempt to evaluate 1.13^n for at least one value of n (with $n > 1$)	1.13, 1.27, 1.44, 1.63, 1.84, 2.08 May be used with a value Values rounded or truncated to 2dp or better	
		A1	6 years coming from finding <i>n</i> such that $1.13^n > 2$	r i i i i i i i i i i i i i i i i i i i	
(b)	Explanation	C1	for explanation		
Q16			Acceptable examples it will decrease the number of years will go down we can't tell (as we don't know how much it is increasing by) it will be an overestimate		
			Not acceptable examples it will increase it will be an underestimate		

Paper: 1MA1/3H					
Question	Answer	Mark	Mark scheme	Additional guidance	
20	44 384	P1	for process to find <i>a</i> , eg. 29 $600 = 24\ 000a + 800$ or $(a =) 1.2$ oe		
		P1	for $(P_{2020} =)$ "1.2" × 29 600 + 800 (= 36 320)		
Q17		P1	for $(P_{2021} =)$ "1.2" × "36 320" + 800		
		A1	cao		