

GCSE Mathematics

Paper 2 Higher Tier

Mark scheme

8300 November 2017

Version: 1.0 Final

www.yesterdaysmathsexam.com MARK SCHEME - GCSE MATHEMATICS - 8300/2H - NOVEMBER 2017

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
	31 8	B1			
1	Ad	ditional G	Guidance		
	250%	B1			
2	Additional Guidance				
3	$\left(\frac{1}{3}, \frac{1}{9}\right)$	B1			
3	Ad	ditional G	Guidance		
	kg/m ³	B1			
4		 ditional G	Guidance		

Question	Answer	Mark	Comments		
	Alternative method 1				
	12 <i>x</i> – 8	M1	May be seen in a grid		
	their $12x - 2x = -5$ + their 8 or $10x = 3$ or their $-8 + 5 = 2x$ - their $12x$ or $-3 = -10x$	M1	Collecting two terms in x and two constant terms correctly oe eg $10x - 3 = 0$		
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error		
	Alternative method 2				
5	$\frac{x}{2} - \frac{5}{4}$	M1			
	$3x - \text{their } \frac{x}{2} = \text{their } -\frac{5}{4} + 2$ or $\frac{5}{2}x = \frac{3}{4}$ or $-2 + \text{their } \frac{5}{4} = \text{their } \frac{x}{2} - 3x$ or $-\frac{3}{4} = -\frac{5}{2}x$	M1	Collecting two terms in x and two constant terms correctly oe eg $\frac{5}{2}x - \frac{3}{4} = 0$		
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error		

	Additional Guidance				
	12x - 2 = 2x - 5	MO			
	10x = -3	M1			
	x = -0.3	A1ft			
	12x - 8 = 2x - 5	M1			
	10x = -5	MO			
	$x = \frac{-5}{10}$	A1ft			
	12x - 8 = 2x - 5	M1			
	14x = 3	MO			
5	$x = \frac{3}{14}$	A1ft			
	12x - 8 = 2x - 5	M1			
	14x = -13	MO			
	$x = -\frac{13}{14} $ (two errors)	A0ft			
	12x - 8 = 8x - 20	M1M0A0			
	Any ft answer must be exact or rounded or truncated to at least 2 dp				
	The last two marks can be implied without the collection of terms seen				
	eg $12x - 6 = 2x - 5$ and answer 0.1	M0M1A1ft			
	Collecting terms before the bracket has been expanded	Zero			

Question	Answer	Mark	Comme	nts
	Correct product using a point on the curve or correct division using a point on the curve	B1	eg 2 × 12 (= 24) or 3 × 8 or 5 × 4.8 (= 24) or 6 × 4 or 10 × 2.4 (= 24) or 24 · or 24 ÷ 6 = 4	l (= 24)
	Ado			
	1 × 24 (= 24)			В0
6(a)	12 + 12 (= 24)			В0
	3 × 4 × 2 = 24			В0
	For multiplication, 24 does not have t	vn		
	Ignore any units seen			
	Ignore any lines on the graph			
	8 × 3 = 24 and 12 + 12 = 24 (choice)			В0
	area 6 and length 4 and volume 24			В0

Question	Answer	Mark	Comments		
	Alternative method 1	Alternative method 1			
	Reading from 5 on the graph to give [4.7, 4.9]	M1			
	$\frac{1}{2} \times 6 \times h = [4.7, 4.9]$	M1dep	oe		
	or $[4.7, 4.9] \div (\frac{1}{2} \times 6)$	Wildep			
	[1.56, 1.64]	A1			
	Alternative method 2				
	24 ÷ 5 or 4.8 or $\frac{1}{2} \times 6 \times h$	M1	oe		
6(b)	or $\frac{1}{2} \times 6 \times h \times 5$	IVII			
	$\frac{1}{2} \times 6 \times h = 24 \div 5$		oe		
	or $24 \div 5 \div (\frac{1}{2} \times 6)$				
	or $\frac{1}{2} \times 6 \times h \times 5 = 24$	M1dep			
	or $15h = 24$				
	or 24 ÷ $(\frac{1}{2} \times 6 \times 5)$				
	or 24 ÷ 15				
	1.6	A1			
	Ac	dditional (Guidance		
			I		

Question	Answer	Mark	Commer	nts	
	Enlargement	B1			
	Scale factor (×) $\frac{1}{3}$	B1			
	Centre (5, 1)	B1			
	Additional Guidance				
7	Enlarge (×) $\frac{1}{3}$ (5, 1)	B1B1B1			
	Reduction or makes bigger or unenlargement or increase or negative enlargement			1st B0	
	Any other transformation mentioned or rotation or translation loses the mark				
	eg enlarged and moved up 4 or enlarged and $\begin{pmatrix} -2\\2 \end{pmatrix}$			1st B0	
	Do not accept ÷ 3 for scale factor			2nd B0	

	[0, 5] × 20 + [5, 10] × 48 + [10, 15] × 30 + [15, 20] × 22 or 1170	M1	Must add 4 products	
	their 1170 ÷ 120	M1dep		
8	9.75 or $\frac{39}{4}$ or $9\frac{3}{4}$	A1		
	Ad	ditional G	uidance	
	1170 ÷ 120 or 9.75 with 5 < $x \le 10$ on	answer lin	е	M2A0
	Do not allow M1 for working in the table if a different method is used in working lines			

Question	Answer	Mark	Commen	ts	
	$\tan x = \frac{3}{7} \text{ or } \tan^{-1} \frac{3}{7}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{58}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{58}}$ $\operatorname{or } 90 - \tan^{-1} \frac{7}{3}$ $\operatorname{or } 90 - [66.7, 66.81]$ $\operatorname{or } 90 - 67$	M1	oe $eg \cos x = \frac{7^2 + \left(\sqrt{7^2 + 3}\right)}{2 \times \sqrt{3^2 + 3}}$ Any letter	$\frac{\overline{3^2}}{\overline{7^2} \times 7}$	
9	[23, 23.3]	A1			
	Additional Guidance				
	$\tan = \frac{3}{7}$ or $\tan \frac{3}{7}$ or $\tan^{-1} = \frac{3}{7}$ (u	MO			
	Answer [23, 23.3] (possibly coming f	M1A1			
	If using sine rule must rearrange to	$\sin x = f$	or M1		
	If using cosine rule must rearrange to	$\cos x =$	for M1		
	Allow [0.42, 0.43] for $\frac{3}{7}$				
	Allow 2.33 for $\frac{7}{3}$				
	Allow [7.6, 7.62] for $\sqrt{3^2 + 7^2}$				

Answer	Mark	Comments		
3 6 9 or $23 + 12$ or $1.5n^2$	M1			
35	A1			
Additional Guidance				
Answer line blank with 35 as next term	m in seque	ence	M1A1	
Answer line has attempt at term to te	M1A0			
35 seen on dotted line in sequence but a different answer given eg 50			M1A0	
	3 6 9 or 23 + 12 or 1.5n ² 35 Add Answer line blank with 35 as next term Answer line has attempt at term to te	3 6 9 or 23 + 12 or 1.5n² 35 Additional G Answer line blank with 35 as next term in sequence. Answer line has attempt at term to term rule or	3 6 9 or 23 + 12 or 1.5n² 35 Additional Guidance Answer line blank with 35 as next term in sequence Answer line has attempt at term to term rule or nth term but 35 seen	

	$\frac{x^2}{2x^2+1}$	B1		
11	Ad	ditional G	iuidance	

Question	Answer	Mark	Commen	ts	
	64 000 000 ÷ 95 000 or 673.() or 674 or $\frac{12\ 800}{19}$ or 82 000 000 ÷ 140 000 or 585.() or 586 or $\frac{4100}{7}$	M1	oe population ÷ area Accept a pair of consiste eg 64 ÷ 95 or 0.673 o and 82 ÷ 140 or 0.585	or 0.674	
and consistent division or 585.() or 586 or 590 or 89 600 and 77 900 Accept 700 with Accept 600 with Accep		Correct comparable value consistent divisions eg 0.674 and 0.586 Accept 700 with division Accept 600 with division Germany	seen for UK		
12	Comparable values and correct conclusion	A1ft	eg 673 and 585 and greater for UK 1ft 0.673 and 0.585 and greater for U ft M1A0 and comparable values Ignore further work		
	Additional Guidance				
	Comparable values means both must with common denominators	be in the	same form eg fractions		
	64 000 000 ÷ 95 000 = 67.4 82 000 000 ÷ 140 000 = 5857 Germany is higher		M1 A0 A1ft		
	Ignore subtraction of results				
	673 and 585 and UK has more people per square mile			M1A1A1ft	
	673 and 585 and Germany has more space for their population			M1A1A1ft	
	673 and 585 and UK's population is less spread out			M1A1A1ft	
	673 and 585 and UK is more than Germany			M1A1A1ft	
	673 and 585 and UK is 78 more than	Germany	(ignore further work)	M1A1A1ft	

	673 and 585 and the difference is 88	M1A1A0ft
	673 and 585 and UK population is bigger	M1A1A0ft
	673 and 586 and UK	M1A1A0ft
12 cont	673 and 585 and Germany has more space	M1A1A0ft
	673 > 585 (unless links to countries in working)	M1A1A0ft
	$\frac{12\ 800}{19}$ and $\frac{4100}{7}$ and UK is greater (fractions not comparable)	M1A0A0ft

Question	Answer	Mark	Comme	nts	
	$\left(-\frac{1}{3},-1\right)$	B1			
13	Ad	ditional G	uidance		
	$\frac{3}{4} \times \frac{3}{4} \times 15$ or $\frac{3}{4} \times 15$ or 11.25 and $\frac{3}{4} \times 16$ their 11.25 8.4(375) or 8.44 or 8.438 or $\frac{135}{16}$ or $8\frac{7}{16}$	M1	oe		
14(a)	Additional Guidance				
	8.43 or 8.437			M1A1	
	8.4 seen, answer 8	M1A1			
	$\frac{3}{4}$ of 11.25 (unless correctly evaluate	MO			
	$\frac{3}{4}$ × 8.4375, answer 6.328 (further work)			M1A0	
	11.25 + 8.4375, answer 19.6875 (further work)			M1A0	

Question	Answer	Mark	Comments
	Alternative method 1		
	Ticks second box and [7.425, 7.5375]		ft correct box ticked for comparing with their answer to (a)
	or		B1ft [7.425, 7.5375]
	Ticks second box		with no or incorrect decision
	and correctly evaluates	B2ft	or
	$\frac{2}{3}$ × their 11.25		Correctly evaluates $\frac{2}{3}$ × their 11.25
			with no or incorrect decision
	Alternative method 2		
	Ticks second box and valid comparison		$eg \frac{8}{12} and \frac{9}{12}$
14(b)			0.66 or 0.67 and 0.75 66.()% or 67% and 75%
			$\frac{9}{16} \text{ and } \frac{8}{16}$ clear diagrams showing $\frac{2}{3}$ and $\frac{3}{4}$
			B1 Ticks second box
		B2	and incomplete comparison
			eg $\frac{8}{12}$ and $\frac{3}{4}$
			two thirds is less than three quarters
			$\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$ and $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12}$
			or
			Valid comparison (that would score B2) with no or incorrect decision

Additional Guidance	
In Alt 1 only follow through their answer to (a) for the comparison, the working for $\frac{2}{3}$ × their 11.25 must be correct	
(a) answer 6.5 (b) Ticks first box and 7.5 seen	B2ft
Accept 0.66 or 0.67 for $\frac{2}{3}$	
Using 0.6 for $\frac{2}{3}$	В0

Question	Answer	Mark	Comments		
	Alternative method 1				
	1.015	M1	oe eg 101.5% or 1 + $\frac{1.5}{100}$		
			Implied by 6090		
	6000×1.015^n for any positive integer $n > 1$	M1dep	oe Implied by 6181.()		
	11		If showing trials for 10 and/or 11 years, must have 6000 × 1.015 ¹⁰ = 6963.() and/or		
15		A1 If showing totals from year on year and/or 11 years, must have (Y10) [6963.21, 6963.30] and/or	(Y10) [6963.21, 6963.30]		
	Alternative method 2				
	1.015	M1	oe eg 101.5% or 1 + $\frac{1.5}{100}$ Implied by 6090		
	Evaluates 1.015^n for any positive integer $n > 1$ and $7000 \div 6000$ or 1.166 or 1.167 or 1.17	M1dep			
	11	A1	If showing trials for $n = 10$ and/or 11 must have $1.015^{10} = [1.160, 1.161]$ and/or $1.015^{11} = [1.177, 1.178]$		

	Additional Guidance	
	Values for working year on year	
	Y1 6000 × 1.015 = 6090	
	Y2 6090 × 1.015 = 6181.35	
	Y3 6181.35 × 1.015 = [6274.07, 6274.08]	
	Y4 [6274.07, 6274.08] × 1.015 = [6368.18, 6368.20]	
	Y5 [6368.18, 6368.20] × 1.015 = [6463.70, 6463.73]	
15	Y6 [6463.70, 6463.73] × 1.015 = [6560.65, 6560.69]	
	Y7 [6560.65, 6560.69] × 1.015 = [6659.05, 6659.11]	
	Y8 [6659.05, 6659.11] × 1.015 = [6758.93, 6759.00]	
	Y9 [6758.93, 6759.00] × 1.015 = [6860.31, 6860.39]	
	Y10 [6860.31, 6860.39] × 1.015 = [6963.21, 6963.30]	
	Y11 [6963.21, 6963.30] × 1.015 = [7067.65, 7067.75]	
	Answer 11 with no working	M2A1
	1000 ÷ 90 = 11.1 Answer 11	Zero

В1

В1

B2

B2

Question	Answer	Mark	Comme	nts
	$3y(3y^2 - 2)$ or $-3y(2 - 3y^2)$	B2	B1 $3(3y^3 - 2y)$ or $y(9y^2)$ or $-3(2y - 3y^3)$ or $-y(6y^2)$,
	Ad	ditional G	uidance	
16(a)	$3y(3y^2-2)$ or $-3y(2-3y^2)$ followed by incorrect further work eg $3y(3y^2-2) = 3y^2(3y-2)$			B1
	$3y(3y^2 - 2) = 3y(\sqrt{3}y + 2)(\sqrt{3}y - 2)$			B2
	$3y(3y^2 - 2) = 9y^3 - 6y$ (checking)			B2
	$3y \times (3y^2 - 2)$			B2
	$3 \times (3y^3 - 2y)$			B1
	$y3(3y^2-2)$			B1
	(3x-1)(x-7) or $(1-3x)(7-x)$	B2	B1 $(3x + a)(x + b)$ where $ab = 7$ or $a + 3b$ or $(a - 3x)(b - x)$ where $ab = 7$ or $a + 3b$	
	Additional Guidance			
	(3x + 1)(x + 7)			B1
16(b)	(3x-1)(x-7)			B1
10(1)	(3x-4)(x-6)			B1

(7 - 3x)(1 - x)

(10 - 3x)(4 - x)

 $(3x-1)\times(x-7)$

Ignore any 'solutions' seen

eg (3x-1)(x-7) in working with $\frac{1}{3}$ and 7 on answer line

Question	Answer	Mark	Commer	nts	
	Alternative method 1				
	$\sin 72 = \frac{h}{12}$ or $12 \sin 72$ or $\cos (90 - 72) = \frac{h}{12}$ or $12 \cos (90 - 72)$ or $\frac{h}{\sin 72} = \frac{12}{\sin 90}$ or 11.4	M1	oe Any letter		
	16 × their 11.4	M1dep			
	[182.4, 182.603] or 183	A1			
	Alternative method 2				
17	$h^2 + (12\cos 72)^2 = 12^2$ or $h^2 + (12\sin (90 - 72))^2 = 12^2$ or $\sqrt{12^2 - (12\cos 72)^2}$ or $\sqrt{12^2 - (12\sin (90 - 72))^2}$ or 11.4	M1	oe Any letter		
	16 × their 11.4	M1dep			
	[182.4, 182.603] or 183	A1			
	Alternative method 3				
	0.5 × 16 × 12 × sin 72 or 91.3	M1	oe eg 0.5 × 16 × 12 × si	n 108	
	2 × their 91.3	M1dep			
	[182.4, 182.603] or 183	A1			
	Additional Guidance				
	2 × 16 × 12 × sin 72			M1M0A0	
	$\sin = \frac{h}{12}$ or $\sin \theta = \frac{h}{12}$ (unless reco	overed)		MO	

Question	Answer	Mark	Comme	nts	
	A ∩ B'	B1			
18(a)	Δ.	Additional G	Guidance		
	(A U B)'	B1			
18(b)		Additional G	Guidance		
	Alternative method 1				
_	$5w \times w$ or $5w^2$		oe		
	or 1620 ÷ 5 or 324	M1	Any letter		
	or trials a value of w for $5w^2$		eg 5 × 12 × 12 or 50 ×	10	
	$\sqrt{\frac{1620}{5}}$ or $\sqrt{324}$	M1dep			
	18	A1	A0 if –18 also given		
	Alternative method 2				
	$l \times \frac{l}{5}$ or $\frac{l^2}{5}$		oe		
19		N 4 4	Any letter		
	or 1620×5 or 8100	M1	60 × 60		
	or trials a value of l for $\frac{l^2}{5}$		eg $\frac{60 \times 60}{5}$ or 80×16		
	$\sqrt{1620 \times 5}$ or $\sqrt{8100}$ or 90	M1dep			
	18	A1	A0 if –18 also given		
	Additional Guidance				
	Answer 18			M2A1	
	18 in working with 90 on answer lin	ie		M2A0	
	Trials for $5w^2$ or $\frac{l^2}{5}$ without answer	18		M1M0A0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	$h = kv^2$ or $5 = k \times 10^2$ or $5 \div 10^2$ or $5 : 10^2$	M1	oe		
	$(k =) \frac{1}{20}$ or $(k =) 0.05$ or $h = \frac{1}{20}v^2$ or $h = 0.05v^2$	A1	oe Correct value for k or correct equation in h and v		
	their $\frac{1}{20} \times 24^2$	M1dep	oe $\frac{1}{20} \times 24^2 \text{ implies M1A1M1}$		
20	28.8	A1ft	ft their k and M1A0M1		
	Alternative method 2				
	$kh = v^2$ or $k \times 5 = 10^2$ or $10^2 \div 5$ or $10^2 : 5$	M1	oe		
	$(k =) 20 \text{ or } 20h = v^2$	A1	oe Correct value for k or correct equation or correct equation in h and v		
	24 ² ÷ their 20	M1dep	oe 24 ² ÷ 20 implies M1A1M1		
	28.8	A1ft	ft their k and M1A0M1		

Mark scheme continues on the next page

Additional Guidance is on the next page

Question	Answer	Mark	Commer	nts		
	Alternative method 3					
	$\left(\frac{24}{10}\right)^2$ or $\frac{576}{100}$ or $24^2:10^2$	M1	oe			
	$\frac{h}{5} = \left(\frac{24}{10}\right)^2$	A1	oe Correct equation in h			
	$5 \times \text{their} \left(\frac{24}{10}\right)^2$	M1dep	oe $5 \times \left(\frac{24}{10}\right)^2 \text{ implies M1A1}$	M1		
	28.8	A1ft	ft their $\left(\frac{24}{10}\right)^2$ and M1A0N	М1		
	Alternative method 4					
	$\left(\frac{10}{24}\right)^2$ or $\frac{100}{576}$ or $10^2:24^2$	M1	oe			
20	$\frac{5}{h} = \left(\frac{10}{24}\right)^2$	A1	oe Correct equation in h			
	$5 \div \text{their} \left(\frac{10}{24}\right)^2$	M1dep	oe $5 \div \left(\frac{10}{24}\right)^2 \text{ implies M1A1}$	M1		
	28.8	A1ft	ft their $\left(\frac{24}{10}\right)^2$ and M1A0N	M1		
	Additional Guidance					
	$h \propto v^2$ with no further valid working			Zero		
	$h = kv$ or $h = kv^3$ or $h = \frac{k}{v^2}$ etc not recovered			Zero		
	Up to first two marks can be awarded for correct working even if not subsequently used					
	Allow use of other letters					

Question	Answer	Mark	Comme	nts
	Draws $y = 3x$ and $(x =) [-0.1, 0.1]$ and $(x =) [1.4, 1.6]$	B2	B1 Draws $y = 3x$ or state $\pm \frac{1}{2}$ square tolerance for Graph must be seen for from 0 to 1.5	drawing graph
21(a)	Additional Guidance			
	Ignore any y values seen			
	Solutions from a non-graphical method			В0
	Ignore other lines drawn on grid			

Question	Answer	Mark	Comme	nts
21(b)	Full evaluation of method and answer	B2	eg1 Cannot divide by <i>x</i> and eg2 Should have factoris would have also found the eg3 Should have used at then he would have also eg4 Should have used at then he would have also eg5 Should have completed then he would have also eg5 Should have also should have factorise eg3 Should have factorise eg3 Should have used the eg4 Should have drawn eg5 Only found one solutions.	sed and then he hat $x = 0$ he formula and found that $x = 0$ a graphical method found that $x = 0$ eted the square found that $x = 0$ tted sed he formula a graph
	Ade	ditional G	eg6 Cannot divide by zer	го
	For B2 there needs to be an evaluation that $x = 0$ has been omitted from the a	n of the mo		
	x(2x + 5) = 0 x = 0 and $x = -2.5$			B2
	Should be two solutions			B1
	What about $x = 0$			B1
	The answer is wrong			В0
	Ignore non-contradictory further work			

Question	Answer	Mark	Comments
	Alternative method 1		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
22	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] (× 100) their [981, 982] or [0.19, 0.1922] or [19, 19.22]	M1dep	oe dep on M3 their [981, 982] must be the area of semicircle radius 25
	[19, 19.22] and No or [0.19, 0.1922] and 0.2 and No	A1	

Question	Answer	Mark	Comments
	Alternative method 2		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] × 5 or [942, 942.6]	M1dep	oe dep on M3
	[942, 942.6] and [981, 982] and No	A1	oe eg 300π and 312.5π and No

Mark scheme continues on the next page

Additional Guidance is on the next page

Question	Answer	Mark	Comments
	Alternative method 3		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
	$0.2 \times \text{their} [981, 982]$ or 62.5π or $[196.2, 196.4]$	M1dep	oe dep on 1st M1 their [981, 982] must be the area of semicircle radius 25
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on 1st M1 and 3rd M1 Area of sector
	[188.4, 188.52] and [196.2, 196.4] and No	A1	oe eg 60π and 62.5π and No
	Ad	ditional G	uidance
	Alt 3 20% of [981, 982] does not score 2nd M1 unless evaluated correctly		

Question	Answer	Mark	Commer	nts
	Alternative method 1			
	30 ÷ 20 or 1.5	M1	May be implied by correct vertical axis	ct labelling on
	12 ÷ 15 or 0.8	M1		
	Draws block for $65 \le x \le 80$ with height 8 small squares	A1	Mark intention	
	Alternative method 2	1		
	12 ÷ (30 ÷ 6) or 12 ÷ 5 or 2.4	M1		
	their 2.4 ÷ 1.5 or 1.6	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
23(a)	Alternative method 3			
	12 ÷ (30 ÷ 150) or 12 ÷ 0.2 or 60	M1		
	their 60 ÷ 7.5 or 8	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
	Alternative method 4			
	$1.5 \times (30 \div 6)$ or 1.5×5 or 7.5	M1		
	12 ÷ their 7.5 or 1.6	M1dep		
	Draws block for $65 \le x < 80$ with height 8 small squares	A1	Mark intention	
	Additional Guidance			
	Draws block for $65 \le x < 80$ with height 8 small squares			3 marks

Question	Answer	Mark	Comments	
23(b)	10 × 4.5 or 9 × 30 ÷ 6 or 225 ÷ (30 ÷ 6) or 45 or 10 × 3.6 or 7.2 × (30 ÷ 6) or 180 ÷ (30 ÷ 6) or 36 or 25 × 2 or 10 × (30 ÷ 6) or 250 ÷ (30 ÷ 6) or 50 or 34.6 × 30 ÷ 6 or 865 ÷ (30 ÷ 6)	M1	oe May be seen on histogram	
	173	A1		
	Additional Guidance			

Question	Answer	Mark	Comments	
	Alternative method 1			
	0.5 × 8 × 9 or 36 or (27 – 8) × 9 or 19 × 9 or 171	M1	May be seen on graph	
	$0.5 \times 8 \times 9 + (27 - 8) \times 9$ or 207	M1dep	M2 0.5 × (27 + 19) × 9	
	207 and Yes	A1		
	Alternative method 2			
	0.5 × 8 × 9 or 36	M1	May be seen on graph	
	$\frac{200 - \text{their } 36}{9}$ or $\frac{164}{9}$ or 18.2	M1dep		
	26.2 and Yes or 18.2 and 19 and Yes	A1		
24	Alternative method 3			
	0.5 × 8 × 9 or 36	M1	May be seen on graph	
	$\frac{200 - \text{their } 36}{27 - 8}$ or $\frac{164}{19}$ or 8.6	M1dep		
	8.6 and Yes	A1		
	Alternative method 4			
	0.5 × 8 × 9 or 36	M1	May be seen on graph	
	Attempt at total distance for Beth for $26.2 \le \text{total time} < 27$	M1dep	eg (time 26.5s) 0.5 × 8 × 9 + (26.5 – 8) × 9	
	Correct total distance for Beth for 26.2 ≤ total time < 27 and Yes	A1	eg (time 26.5s) 202.5 and Yes	
	Additional Guidance			
			1	

Question	Answer	Mark	Comme	nts
	342.5 or 347.5	B1	Allow 347.49 for 347.5	
	6.35 or 6.45 or 2.55 or 2.65	B1	Allow 6.44 9 for 6.45 Allow 2.64 9 for 2.65	
	their 6.35 × their 2.55 or 16.1925	M1	Must use their lower bout their 6.35 must be [6.3, 6] their 2.55 must be [2.5, 2]	6.4)
25	their 347.5 ÷ their 16.1925	M1dep	Must use their upper bound for force their 347.5 bound must be (345, 350]	
	21.46	A1	Must come from 347.5 ÷ or 347.49 ÷ (6.35 × 2.55	, ,
Additional Guidance				
	347.49 ÷ (6.35 × 2.55) = 21.46			B0B1M1M1A0
	21.4 or 21.5 does not score any m			

Question	Answer	Mark	Comments	
	Alternative method 1 Shows that	CB (or BC	C) is equal and parallel to DE (or ED)	
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$	M1	oe method	
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC}	
	CB is equal and parallel to DE	A1	Must see a correct vector for first A1 and have a statement oe eg <i>CB</i> is equal and parallel to <i>ED</i>	
	Alternative method 2 Shows that BE (or EB) is equal and parallel to CD (or DC)			
26	$(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method	
	$(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (\overrightarrow{DC} =) $-\mathbf{a}$ - 2 \mathbf{b}	
	BE is equal and parallel to CD	A1	Must see two correct vectors for first A1 and have a statement oe eg <i>BE</i> is equal and parallel to <i>DC</i>	

Question	Answer	Mark	Comments
	Alternative method 3 Shows that	two pairs	of opposite sides are parallel
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method
26	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC} or \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (\overrightarrow{DC} =) $-\mathbf{a}$ - 2 \mathbf{b}
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is parallel to DE and BE is parallel to CD	A1	Must see three correct vectors and have two statements oe eg $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$ and BC is parallel to DE and BE is parallel to DC

Question	Answer	Mark	Commer	nts
	Alternative method 4 Shows that	t two pairs	of opposite sides are equ	al
	$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	ое	
26	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$ $(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$	A1	Must see correct method or \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and Must see three correct vertwo statements	d (DC =) − a − 2 b
	and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is equal to DE and BE is equal to CD	A1	two statements oe eg $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$ and BC is equal to DE and BE is equal to DC	
	Additional Guidance			
	Choose the method that gives most n Ignore incorrect vectors if not contrad			
	For parallel allow in the same direction or in the opposite direction			
	For equal to allow = or the same as			
	Condone incorrect notation if unambiged $CB = -(b - 2a) - 2b - a$	guous		M1

Question	Answer	Mark	Comments
	Alternative method 1		
	$x(x + 2)$ or $x^2 + 2x$ or $2x \times 4$ or $8x$ or 4(x + 2) or $4x + 8$	M1	
	$x(x + 2)$ or $x^2 + 2x$ and $2x \times 4$ or $8x$ and 4(x + 2) or $4x + 8$	M1dep	oe eg $\frac{x(x+2)-2x\times 4}{4(x+2)}$
27	$x(x + 2) - 2x \times 4 = 4(x + 2)$	M1dep	oe equation with fractions eliminated dep on M2
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected
	$\frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}}{2 \times 1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2} \text{ or } \frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8} \text{ or } 5 \pm \sqrt{33}$ or $[10.744, 10.745] \text{ and } [-0.745, -0.744]$	M1	oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic
	10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen	A1	Must both be to 2 decimal places

Question	Answer	Mark	Comments		
	Alternative method 2 (from $\frac{x}{4} = 1$	2 <i>x</i>			
	Alternative method 2 (from $\frac{x}{4} = 1$	$\frac{1}{x+2}$			
	$x(x + 2)$ or $x^2 + 2x$				
	or				
	(x+2) + 2x or $3x + 2$	M1			
	or				
	12 <i>x</i> + 8				
27	$\frac{x(x+2)}{4}$ or $\frac{x^2+2x}{4}$				
	and	M1dep			
	$\frac{x+2+2x}{x+2} \text{or} \frac{3x+2}{x+2}$				
	x(x + 2) = 4(x + 2 + 2x)		oe equation with fractions eliminated		
	or	M1dep	dep on M2		
	x(x + 2) = 4(3x + 2)				
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected		
	$10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}$		oe		
	2×1		Correct for their 3-term quadratic		
	or $\frac{10 \pm \sqrt{100 + 32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$	M1	Allow correct factorisation of their 3-term quadratic		
	or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$				
	or				
	[10.744, 10.745] and [-0.745, -0.744]				
	10.74 and -0.74	A1	Must both be to 2 decimal places		
	with $x^2 - 10x - 8$ (= 0) oe seen				
			1		

Additional Guidance is on the next page

Mark

Comments

	Alternative method 3 (from $\frac{x}{4} - 1 = \frac{2x}{x+2}$)				
27	$\frac{x-4}{4}$	M1			
	$(x-4)(x+2)$ or $x^2-4x+2x-8$ or x^2-2x-8 and $2x \times 4$ or $8x$	M1dep			
	$(x-4)(x+2) = 2x \times 4$ or $x^2 - 4x + 2x - 8 = 8x$	M1dep	oe equation with fractions eliminated dep on M2		
	$x^2 - 10x - 8 (= 0)$	A1	oe 3-term quadratic equation with terms collected		
	$\frac{10 \pm \sqrt{(-10)^2 - 4 \times 1 \times -8}}{2 \times 1}$ or $\frac{10 \pm \sqrt{100 + 32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$ or $5 \pm \sqrt{5^2 + 8}$ or $5 \pm \sqrt{33}$ or $[10.744, 10.745]$ and $[-0.745, -0.744]$	M1	oe Correct for their 3-term quadratic Allow correct factorisation of their 3-term quadratic		
	10.74 and -0.74 with $x^2 - 10x - 8$ (= 0) oe seen	A1	Must both be to 2 decimal places		
	Additional Guidance				
	10.74 and -0.74 from T & I or with no working			6 marks	
	10.74 or -0.74 from T & I or with no working			Zero	
	In quadratic formula, do not allow -10^2 for $(-10)^2$ unless recovered				

Question

Answer