1	Solve $2x^2 + 3x - 2 > 0$	<u>Summer 2017 Paper 3 Q19</u>
		(Total for Question 1 is 3 marks)

				<u>Summer 2018 Paper 1 Q20</u>
2	<i>n</i> is an integer such that $3n + 2 \le 14$ and	6n		
4	<i>n</i> is an integer such that $3n + 2 \le 14$ and	$\frac{1}{n^2 + 5} > 1$		
	Find all the possible values of n .			
	1			
			(Total for Question 2 is	s 5 marks)
				,

Summer	2019 Pape	er 3 Q18
~~~~~~		

3 (a) Show that (2x + 1)(x + 3)(3x + 7) can be written in the form  $ax^3 + bx^2 + cx + \overline{d}$  where a, b, c and d are integers.

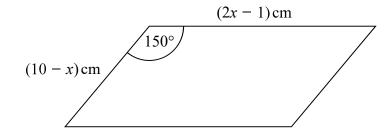
(3)

(b) Solve 
$$(1-x)^2 < \frac{9}{25}$$

(3)

(Total for Question 3 is 6 marks)

<u>Autumn</u>	2018	Paner	2	019


4	Solve	22 <	$\frac{m^2+7}{\Delta}$	< 32
---	-------	------	------------------------	------

Show all your working.

(Total for Question 4 is 5 marks)

Autumn 2019 Paper 2 Q23

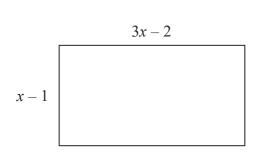
5 The diagram shows a parallelogram.

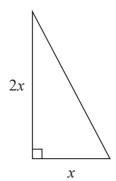


The area of the parallelogram is greater than 15 cm²

(a) Show that  $2x^2 - 21x + 40 < 0$ 

(3)


(b) Find the range of possible values of x.


(3)

<u>Summer 2022 Paper 2 Q22</u>
--------------------------------

6	Find algebraically the set of values of x for which			
		$x^2 - 49 > 0$	and	$5x^2 - 31x - 72 > 0$
				(Total for Question 6 is 5 marks)
				(10tal lot Vaccion o is 5 marks)

7 Here is a rectangle and a right-angled triangle.





All measurements are in centimetres.

The area of the rectangle is greater than the area of the triangle.

Find the set of possible values of x.

(Total for Question 7 is 5 marks)