Paper: 1MA1/1H					
Question	Working	Answer	Mark	Notes	
21			C1	states (angle) $ABC =$ (angle) BCD	
			C1	states $2^{nd} link AB = CD$	
Q1			C1	states 3^{rd} link with reason: $BC = BC$ (common)	
			C1	concludes proof by stating (triangle) $ABC \equiv$ (triangle) DCB with reason SAS and $AC = BD$	

Paper: 1MA1/3H					
Question	Answer	Mark	Mark scheme	Additional guidance	
21 (a)	Proof	C1 C1	for starting the proof, identifying a pair of relevant equal sides or angles with reasons from AD = BC (opposite sides of a parallelogram are equal) angle PAD = angle QCB (opposite angles of a parallelogram are equal) angle ADP = angle CBQ (given or both 90°) (dep C1) for complete identification of all three equal aspects with reasons		
(b)	Explanation	C1 C1 C1	(dep C2) for conclusion of congruency proof for identifying a pair of equal sides or angles in <i>APCQ</i> , with reason, eg $AP = QC$ since triangle <i>ADP</i> is congruent to triangle <i>CBQ</i> (dep C1) for reasoning that <i>APCQ</i> is a parallelogram so opposite sides of a parallelogram are parallel	Congruency conclusion must include a reference to ASA	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
⁴ Q3	A & D	B1	сао	

Paper: 1MA1/3H					
Question	Answer	Mark	Mark scheme	Additional guidance	
20	Proof	C1	for angle EAC = angle EDB (Base angles of an isosceles triangle are equal)	Reasons must be linked to their method.	
			or		
			for explanation that $AB + BC = BC + CD$ using ratio so $AC = DB$ oe		
			or		
Q4			AE=DE (given)		
_					
		C1	for at least 2 correct pairings with reasons		
		G 4			
		Cl	for a complete proof including all reasons given and SAS		