| Question | Scheme                                                                                                                                                                                     | Marks | AOs       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 4 (a)    | Attempts $f(3) = \text{and } f(4) = \text{where } f(x) = \pm (2\ln(8-x)-x)$                                                                                                                | M1    | 2.1       |
|          | $f(3) = (2\ln(5) - x) = (+)0.22 \text{ and } f(4) = (2\ln(4) - 4) = -1.23$ <u>Change of sign</u> and function <u>continuous</u> in interval $[3, 4] \Rightarrow \underline{\text{Root}}^*$ | A1*   | 2.4       |
|          |                                                                                                                                                                                            | (2)   |           |
| (b)      | For annotating the graph by drawing a cobweb diagram starting at $x_1 = 4$ It should have at least two spirals                                                                             | M1    | 2.4       |
|          | Deduces that the iteration formula <b>can be used</b> to find an approximation for $\alpha$ because <b>the cobweb spirals inwards</b> for the cobweb diagram                               | A1    | 2.2a      |
|          |                                                                                                                                                                                            | (2)   |           |
|          |                                                                                                                                                                                            |       | (4 marks) |

## Notes:

**(a)** 

M1: Attempts  $f(3) = and f(4) = where f(x) = \pm (2\ln(8-x)-x)$  or alternatively compares

 $2\ln 5$  to 3 and  $2\ln 4$  to 4. This is not routine and cannot be scored by substituting 3 and 4 in both functions

A1: Both values (calculations) correct to at least 1 sf with correct explanation and conclusion. (See underlined statements)

When comparing terms, allow reasons to be 2ln8 = 3.21 > 3, 2ln4 = 2.77 < 4 or similar

## **(b)**

M1: For an attempt at using a cobweb diagram. Look for 5 or more correct straight lines. It may not start at 4 but it must show an understanding of the method. If there is no graph then it is M0 A0 A1: For a correct attempt starting at 4 and deducing that the iteration can be used as the iterations converge to the root. You must statement that it can be used with a suitable reason. Suitable reasons could be "it spirals inwards", it gets closer to the root", it converges "



| Questi     | on Scheme                                                                                                                                                                                                                | Marks                          | AOs                                         |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|--|
| 5          | The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root                                                                                                                                                              |                                |                                             |  |
| (a)        | $\left\{ \mathbf{f}(x) = 2x^3 + x^2 - 1 \Longrightarrow \right\}  \mathbf{f}'(x) = 6x^2 + 2x$                                                                                                                            | B1                             | 1.1b                                        |  |
|            | $\left\{ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$                                                                          | M1                             | 1.1b                                        |  |
|            | $= \frac{x_n(6x_n^2 + 2x_n) - (2x_n^3 + x_n^2 - 1)}{6x_n^2 + 2x_n} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n} *$                                                                                        | A1*                            | 2.1                                         |  |
|            |                                                                                                                                                                                                                          | (3)                            |                                             |  |
| (b)        | $\{x_1 = 1 \Rightarrow\} x_2 = \frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)} \text{ or } x_2 = 1 - \frac{2(1)^3 + (1)^2 - 1}{6(1)^2 + 2(1)}$                                                                                  | M1                             | 1.1b                                        |  |
|            | $\implies x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$                                                                                                                                                                        | A1                             | 1.1b                                        |  |
|            |                                                                                                                                                                                                                          | (2)                            |                                             |  |
| (c)        | Accept any reasons why the Newton-Raphson <b>method</b> cannot be used<br>with $x_1 = 0$ which refer or <i>allude</i> to either the stationary point or the<br>tangent. E.g.<br>• There is a stationary point at $x = 0$ | B1                             | 2.3                                         |  |
|            | • Tangent to the curve (or $y = 2x^3 + x^2 - 1$ ) would not meet the x-axis                                                                                                                                              |                                |                                             |  |
|            | • Tangent to the curve (or $y = 2x^3 + x^2 - 1$ ) is horizontal                                                                                                                                                          |                                |                                             |  |
|            |                                                                                                                                                                                                                          | (1)                            |                                             |  |
|            |                                                                                                                                                                                                                          | (6                             | marks)                                      |  |
|            | Notes for Question 5                                                                                                                                                                                                     |                                |                                             |  |
| <b>(a)</b> |                                                                                                                                                                                                                          |                                |                                             |  |
| B1:        | States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} =$                                                                                                                      | $6x^2 + 2x$ )                  |                                             |  |
| M1:        | Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$                                                                                                              |                                |                                             |  |
| A1*:       | A correct intermediate step of making a common denominator which leads to                                                                                                                                                | the given ar                   | nswer                                       |  |
| Note:      | Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$ ) in the NR formula                                                                                                                                  | $\left\{x_{n+1}\right\} = x_n$ | $-\frac{\mathrm{f}(x_n)}{\mathrm{f}'(x_n)}$ |  |
| Note:      | Allow M1A1 for                                                                                                                                                                                                           |                                |                                             |  |
|            | • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$                                                       |                                |                                             |  |
| Note       | Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1                                                                                                                                                              |                                |                                             |  |
| Note       | Condone $x_n - \frac{2x_n^3 + x_n^2 - 1}{"6x_n^2 + 2x_n"}$ or $x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ (i.e. no $x_{n+1} =$ ) for M1                                                                                     |                                |                                             |  |
| Note:      | Give M0 for $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ followed by $x_{n+1} = 2x_n^3 + x_n^2 - 1 - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$                                                                               |                                |                                             |  |
| Note:      | Correct notation, i.e. $x_{n+1}$ and $x_n$ must be seen in their final answer for A1*                                                                                                                                    |                                |                                             |  |

| Question                                                                                                                                                                          |                                                                                                                                                             | Scheme                                                                                                                                                                       | Marks     | AOs      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--|
| 11 (a)                                                                                                                                                                            | $\{y = x^x \Longrightarrow\}$ In                                                                                                                            | $ny = x \ln x$                                                                                                                                                               | B1        | 1.1a     |  |
| Way 1                                                                                                                                                                             | 1                                                                                                                                                           | dy 1 - In m                                                                                                                                                                  | M1        | 1.1b     |  |
|                                                                                                                                                                                   | $\overline{y}$                                                                                                                                              | $\frac{1}{dx} = 1 + \ln x$                                                                                                                                                   | A1        | 2.1      |  |
|                                                                                                                                                                                   | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\}  \frac{x}{x} + \ln x = 0  \text{or}$                                                    | $1 + \ln x = 0 \implies \ln x = k \implies x = \dots$                                                                                                                        | M1        | 1.1b     |  |
|                                                                                                                                                                                   | x =                                                                                                                                                         | $=e^{-1}$ or awrt 0.368                                                                                                                                                      | A1        | 1.1b     |  |
|                                                                                                                                                                                   | Ν                                                                                                                                                           | ote: $k \neq 0$                                                                                                                                                              | (5)       |          |  |
| (a)                                                                                                                                                                               | $\{y = x\}$                                                                                                                                                 | $x \Longrightarrow y = e^{x \ln x}$                                                                                                                                          | B1        | 1.1a     |  |
| Way 2                                                                                                                                                                             | dy_                                                                                                                                                         | $\begin{pmatrix} x \\ y \end{pmatrix}_{\alpha^{x \ln x}}$                                                                                                                    | M1        | 1.1b     |  |
|                                                                                                                                                                                   | $\frac{1}{\mathrm{d}x} =$                                                                                                                                   | $\begin{pmatrix} -+ \ln x \\ x \end{pmatrix}^{e}$                                                                                                                            | A1        | 2.1      |  |
|                                                                                                                                                                                   | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\}  \frac{x}{x} + \ln x = 0  \text{or}$                                                    | $1 + \ln x = 0 \implies \ln x = k \implies x = \dots$                                                                                                                        | M1        | 1.1b     |  |
|                                                                                                                                                                                   | x =                                                                                                                                                         | $=e^{-1}$ or awrt 0.368                                                                                                                                                      | A1        | 1.1b     |  |
|                                                                                                                                                                                   | N                                                                                                                                                           | ote: $k \neq 0$                                                                                                                                                              | (5)       |          |  |
| (b) Attempts both $1.5^{1.5} = 1.8$ and $1.6^{1.6} = 2.1$ and at least one result is correct to awrt 1 dp                                                                         |                                                                                                                                                             | d $1.6^{1.6} = 2.1$ and at least one result is                                                                                                                               | M1        | 1.1b     |  |
|                                                                                                                                                                                   | 1.8 < 2 and $2.1 > 2$ and as                                                                                                                                | s <i>C</i> is continuous then $1.5 < \alpha < 1.6$                                                                                                                           | A1        | 2.1      |  |
|                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                              | (2)       |          |  |
| (c)                                                                                                                                                                               | Attempts $x_{n+1} = 2x_n^{1-x_n}$ at least<br>Can be implied by $2(1.5)^{1-1.5}$ or                                                                         | once with $x_1 = 1.5$<br>r awrt 1.63                                                                                                                                         | M1        | 1.1b     |  |
| $\{x_4 = 1.67313 \Rightarrow\} x_4 = 1.673 (3 \text{ dp}) \text{ cao}$                                                                                                            |                                                                                                                                                             | A1                                                                                                                                                                           | 1.1b      |          |  |
|                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                              | (2)       |          |  |
| (d)                                                                                                                                                                               | <ul> <li>Give 1<sup>st</sup> B1 for any of</li> <li>oscillates</li> <li>periodic</li> </ul>                                                                 | <ul> <li>Give B1 B1 for any of</li> <li>periodic {sequence} with period 2</li> <li>oscillates between 1 and 2</li> </ul>                                                     | B1        | 2.5      |  |
|                                                                                                                                                                                   | <ul> <li>non-convergent</li> <li>divergent</li> <li>fluctuates</li> <li>goes up and down</li> <li>1, 2, 1, 2, 1, 2</li> <li>alternates (condone)</li> </ul> | Condone B1 B1 for any of<br>• fluctuates between 1 and 2<br>• keep getting 1, 2<br>• alternates between 1 and 2<br>• goes up and down between 1 and 2<br>• 1, 2, 1, 2, 1, 2, | B1        | 2.5      |  |
|                                                                                                                                                                                   |                                                                                                                                                             | (2)                                                                                                                                                                          | 1 maulua) |          |  |
| Note A (                                                                                                                                                                          | common solution                                                                                                                                             |                                                                                                                                                                              | (1        | i marks) |  |
| A maximum of 3 marks (i.e. B1 1 <sup>st</sup> M1 and 2 <sup>nd</sup> M1) can be given for the solution<br>$\log y = x \log x \implies \frac{1}{y} \frac{dy}{dx} = 1 + \log x$ (dy |                                                                                                                                                             |                                                                                                                                                                              |           |          |  |
|                                                                                                                                                                                   | $\left\{\frac{dy}{dx} = 0 \Longrightarrow\right\}  1 + \log x = 0 \implies x = 10^{-1}$                                                                     |                                                                                                                                                                              |           |          |  |

• 1<sup>st</sup> B1 for  $\log y = x \log x$ • 1<sup>st</sup> M1 for  $\log y \to \lambda \frac{1}{y} \frac{dy}{dx}$ ;  $\lambda \neq 0$  or  $x \log x \to 1 + \log x$  or  $\frac{x}{x} + \log x$ • 2<sup>nd</sup> M1 can be given for  $1 + \log x = 0 \Rightarrow \log x = k \Rightarrow x = ...; k \neq 0$ 

| Question | Scheme                                                                                                                            | Marks | AOs        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| 7(a)     | $\ln x \to \frac{1}{x}$                                                                                                           | B1    | 1.1a       |
|          | Method to differentiate $\frac{4x^2 + x}{2\sqrt{x}}$ - see notes                                                                  | М1    | 1.1b       |
|          | E.g. $2 \times \frac{3}{2} x^{\frac{1}{2}} + \frac{1}{2} \times \frac{1}{2} x^{-\frac{1}{2}}$                                     | A1    | 1.1b       |
|          | $\frac{dy}{dx} = 3\sqrt{x} + \frac{1}{4\sqrt{x}} - \frac{4}{x} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}} *$                     | A1*   | 2.1        |
|          |                                                                                                                                   | (4)   |            |
| (b)      | $12x^{2} + x - 16\sqrt{x} = 0 \Longrightarrow 12x^{\frac{1}{2}} + x^{\frac{1}{2}} - 16 = 0$                                       | M1    | 1.1b       |
|          | E.g. $12x^{\frac{3}{2}} = 16 - \sqrt{x}$                                                                                          | dM1   | 1.1b       |
|          | $x^{\frac{3}{2}} = \frac{4}{3} - \frac{\sqrt{x}}{12} \implies x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} *$ | A1*   | 2.1        |
|          |                                                                                                                                   | (3)   |            |
| (c)      | $x_2 = \sqrt[3]{\left(\frac{4}{3} - \frac{\sqrt{2}}{12}\right)^2}$                                                                | М1    | 1.1b       |
|          | $x_2 = $ awrt 1.13894                                                                                                             | A1    | 1.1b       |
|          | x = 1.15650                                                                                                                       | A1    | 2.2a       |
|          |                                                                                                                                   | (3)   |            |
|          |                                                                                                                                   |       | (10 marks) |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                       | Marks               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 7 (a)<br>(b)       | Applies $vu'+uv'$ with $u=2x+2x^2$ and $v=\ln x$ or vice versa<br>$f'(x) = \ln(x)(2+4x) + (2x+2x^2) \times \frac{1}{x}$<br>Sets $\ln(x)(2+4x) + (2x+2x^2) \times \frac{1}{x} = 0$ and makes $\ln x$ the subject<br>$1 + x = -\frac{-\frac{1+x}{1+2x}}{1+2x}$ | M1A1A1<br>(3)<br>M1 |
|                    | $III(x) = -\frac{1}{1+2x} \Longrightarrow x = e$                                                                                                                                                                                                             | (3)                 |
| (c)                | Subs $x_0 = 0.46$ into $x = e^{-\frac{1+x}{1+2x}}$<br>x = ayert 0.4675, $x = ayert 0.4684$ , $x = ayert 0.4685$                                                                                                                                              | M1                  |
| (d)                | $x_1 = awn 0.4075, x_2 = awn 0.4084, x_3 = awn 0.4085$<br>A = (0.47, -1.04)                                                                                                                                                                                  | (3)<br>(11 marks)   |
|                    |                                                                                                                                                                                                                                                              |                     |
| Alt 7 (a)          | Writes $f(x) = 2x \ln x + 2x^2 \ln x$ and applies $vu' + uv'$                                                                                                                                                                                                |                     |
|                    | $f'(x) = 2\ln(x) + 2x \times \frac{1}{x} + 2x^2 \times \frac{1}{x} + 4x \ln x$                                                                                                                                                                               | M1A1A1              |
| Alt 7 (a)          | writes $f(x) = 2x \ln x + 2x \ln x$ and applies $\pi x + 4x$<br>$f'(x) = 2\ln(x) + 2x \times \frac{1}{x} + 2x^2 \times \frac{1}{x} + 4x \ln x$                                                                                                               | M1A1A1<br>(3)       |

| Que<br>Nu | estion<br>mber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scheme                                                                                                                                                                                                                                                                                                                                            | Marl                | ĸs  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|--|
| 1.        | . (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f(1.5) = -1.75, $f(2) = 8$                                                                                                                                                                                                                                                                                                                        | M1                  |     |  |
| (         | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sign change (and f(x) is continuous) therefore there is a root $\alpha$ {lies in the interval [1.5, 2]}<br>$x_1 = \left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$                                                                                                                                                                                | A1<br>M1            | [2] |  |
|           | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x_1 = 1.6198$ , $x_1 = 1.6198$ cao<br>$x_2 = 1.612159576$ , $x_3 = 1.612649754$ , $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$<br>f(1.61255) = -0.001166022687, f(1.61265) = 0.0004942645692<br>Sign change (and as f(x) is continuous) therefore a root $\alpha$ lies in the interval<br>[1.61255, 1.61265] $\Rightarrow \alpha = 1.6126$ (4 dp) | A1cao<br>A1<br>M1A1 | [3] |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $[1.01200] \rightarrow \alpha = 1.0120 (+ dp)$                                                                                                                                                                                                                                                                                                    |                     | [2] |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                             |                     | /   |  |
| (b)       | <ul> <li>or f(2) = 8 Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes outside the given interval such as [1.6, 2.1]</li> <li>A1: both f(1.5) = awrt -1.8 or truncated -1.7 and f(2) = 8, states sign change { or f(1.5) &lt; 0 &lt; f(2) or f(1.5) f(2) &lt; 0 } or f(1.5) &lt;0 and f(2) &gt;0; and conclusion e.g. therefore a root α [lies in the interval [1.5, 2]]or "so result shown" or qed or "tick" etc</li> <li>(b) M1: An attempt to substitute x<sub>0</sub> = 1.5 into the iterative formula</li> <li>e.g. see (5 - 1/2(1.5))<sup>1/3</sup>. Or can be implied by x<sub>1</sub> = awrt 1.6</li> <li>A1: x<sub>1</sub> = 1.6198 This exact answer to 4 decimal places is required for this mark</li> </ul> |                                                                                                                                                                                                                                                                                                                                                   |                     |     |  |
|           | <b>A1</b> : <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x_2 = $ awrt 1.6122 <b>and</b> $x_3 = $ awrt 1.6126 (so e.g. 1.61216 and 1.6126498 would be acceptable here                                                                                                                                                                                                                                      | e)                  |     |  |
| (c)       | <ul> <li>(c) M1: Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate f(x). A minority of candidate may choose a tighter range which should include1.61262 (alpha to 5dp), e.g. [1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A mark are met.</li> <li>A1: needs (i) both evaluations correct to 1 sf, (either rounded or truncated) e.g0.001 and 0.0005 or 0.0004 (ii) sign change stated and (iii) some form of conclusion which may be : ⇒ α = 1.6126 or "so result shown" or qed or tick or equivalent N.B. f(1.61264)=0.0003 (to 1 sf)</li> </ul>                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   |                     |     |  |

| Question<br>Number | Scheme                                                                                                     | Marks      |
|--------------------|------------------------------------------------------------------------------------------------------------|------------|
| 10(a)              | $y = \frac{x^2 \ln x}{3} - 2x + 4 \Longrightarrow \frac{dy}{dx} = \frac{2x \ln x}{3} + \frac{x^2}{3x}, -2$ | M1A1, B1   |
|                    | $\frac{2x\ln x}{3} + \frac{x^2}{3x} - 2 = 0 \Longrightarrow x(2\ln x + 1) = 6 \Longrightarrow x =$         | dM1        |
|                    | $\Rightarrow x = \frac{6}{1 + \ln x^2}$                                                                    | A1*        |
|                    |                                                                                                            | (5)        |
| (b)                | $x_1 = \frac{6}{1 + \ln(2.27^2)} = \text{awrt } 2.273$                                                     | M1A1       |
|                    | $x_2 = $ awrt 2.271 and $x_3 =$ awrt 2.273                                                                 | A1 (3)     |
| (c)                | A=(2.3, 0.9)                                                                                               | M1 A1 (2)  |
|                    |                                                                                                            | (10 marks) |

| Question<br>Number | Scheme                                                                                                                                        | Mark   | S          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| <b>5.</b> (a)      | f(1) = -3, $f(2) = 2$                                                                                                                         | M1     |            |
|                    | Sign change (and as $f(x)$ is continuous) therefore a root $\alpha$ lies in the                                                               |        |            |
|                    | interval [1, 2]                                                                                                                               | A1     | [2]        |
| (b)                | $f(x) = -x^3 + 4x^2 - 6 = 0 \Longrightarrow x^2(4 - x) = 6$                                                                                   | M1     | [4]        |
|                    | $\Rightarrow x^2 = \left(\frac{6}{4-x}\right)$ and so $x = \sqrt{\left(\frac{6}{4-x}\right)} *$                                               | A1*    | [2]        |
| (c)                | $x_2 = \sqrt{\left(\frac{6}{4 - 1.5}\right)}$                                                                                                 | M1     |            |
|                    | $x_2 = awrt 1.5492$ ,                                                                                                                         | A1     |            |
|                    | $x_3 = awrt 1.5647$ , <b>and</b> $x_4 = awrt 1.5696 / 1.5697$                                                                                 | A1     |            |
|                    |                                                                                                                                               |        | [3]        |
| (d)                | f(1.5715) = -0.00254665,  f(1.5725) = 0.0026157969                                                                                            |        |            |
|                    | Sign change (and as $f(x)$ is continuous) therefore a root $\alpha$ lies in the interval $[1.5715, 1.5725] \Rightarrow \alpha = 1.572$ (3 dp) | M1A1   |            |
|                    |                                                                                                                                               | (9 mar | [2]<br>ks) |

(a)

M1 Attempts to evaluate **both** f(1) and f(2) and achieves at least one of f(1) = -3 or f(2) = 2If a smaller interval is chosen, eg 1.57 and 1.58, the candidate must refer back to the region 1 to 2 A1 Requires (i) both f(1) = -3 and f(2) = 2 correct,

(ii) sign change stated or equivalent Eg  $f(1) \times f(2) < 0$  and (iii) some form of conclusion which may be : or "so result shown" or ged or tick or equivalent

- **(b)**
- M1 Must either state f(x) = 0 or set  $-x^3 + 4x^2 6 = 0$  before writing down at least the line equivalent to  $\pm x^2(x-4) = \pm 6$

A1\* Completely correct with all signs correct. There is no requirement to show  $\frac{-6}{4-x} \rightarrow \frac{6}{x-4}$ 

Expect to see a minimum of the equivalent to  $x^2 = \left(\frac{-6}{4-x}\right)$  and  $x = \sqrt{\left(\frac{6}{x-4}\right)}$ 

## Alternative working backwards

M1 Starts with answer and squares, multiplies across and expands

$$x = \sqrt{\left(\frac{6}{4-x}\right)} \Longrightarrow x^2 = \frac{6}{4-x} \Longrightarrow x^2(4-x) = 6 \Longrightarrow 4x^2 - x^3 = 6$$

A1 Completely correct  $-x^3 + 4x^2 - 6 = 0$  and states "therefore f(x) = 0" or similar

| Question<br>Number |                                                                                 | Schei                                  | Scheme                                                                                                        |           |  |
|--------------------|---------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|--|
| 10(a)              |                                                                                 | <u> </u>                               | M1: Curve not a straight line<br>through (0, 0) in quadrants 1 and<br>3 only.                                 | MIA 1     |  |
|                    |                                                                                 |                                        | A1: Grad $\rightarrow 0$ as $x \rightarrow \pm \infty$                                                        | MIAI      |  |
|                    |                                                                                 |                                        |                                                                                                               | (2)       |  |
| (b)                | $2 (\cdot, 1) = 0$                                                              |                                        | Substitutes $g(x+1) = \arctan(x+1)$                                                                           |           |  |
|                    | $3 \arctan(x+1) - \pi = 0$                                                      |                                        | in $3g(x+1) - \pi = 0$ and makes                                                                              |           |  |
|                    | $\Rightarrow \arctan(x+1) = \frac{\pi}{2}$                                      |                                        | $\arctan(x+1)$ the subject. Do not                                                                            | MI        |  |
|                    | 3                                                                               |                                        | condone missing brackets unless                                                                               |           |  |
|                    |                                                                                 | dM1· Tal                               | kes tan and makes x the subject e $\sigma$                                                                    |           |  |
|                    |                                                                                 |                                        | $\sqrt{2} \pm 1$ Note that $\tan\left(\frac{\pi}{2}\right)$ does not                                          |           |  |
|                    | $(\pi)$ . $\overline{\pi}$ .                                                    | allow $x =$                            | $\sqrt{3\pm 1}$ . Note that $\tan\left(\frac{1}{3}\right)$ does not                                           |           |  |
|                    | $\Rightarrow x = \tan\left(\frac{\pi}{3}\right) - 1 = \sqrt{3} - 1$             | need to b                              | be evaluated for this mark. May be                                                                            | dM1A1     |  |
|                    | 1                                                                               | implied t                              | by e.g. $x = 0.732$                                                                                           |           |  |
|                    | 1                                                                               | A1: $\sqrt{3}$ –                       | -1                                                                                                            |           |  |
|                    |                                                                                 |                                        |                                                                                                               | (3)       |  |
| (c)                | Sub $x = 5$ and $x = 6$ into $\pm$                                              | e (arctan .                            | $(x-4+\frac{1}{2}x) \Rightarrow -0.126+0.405$                                                                 | M1        |  |
|                    | and obtains at le                                                               | east one                               | answer correct to 1st                                                                                         |           |  |
|                    | Allow equivalent statements of<br>this mark may be withheld if<br>therefore roo | e.g. posit<br>f there ar<br>t lies bet | tive, negative therefore root etc. but<br>e any contradictory statements e.g.<br>ween $g(5)$ and $g(6)$       | A1        |  |
|                    | If $-\left(\arctan x - 4 + \frac{1}{2}x\right)$ is used                         | d to give                              | 0.126,-0.405, allow both marks                                                                                |           |  |
|                    | if a c                                                                          | conclusio                              | on is given.                                                                                                  |           |  |
| (d)                |                                                                                 |                                        | Score for $x = 8$ 2 sector 5 -                                                                                | (2)       |  |
| (u)                |                                                                                 |                                        | Score for $x_1 = 6 - 2 \arctan 5 = \dots$                                                                     |           |  |
|                    | $x_1 = 8 - 2 \arctan 5$                                                         |                                        | (radians) or awrt -149 (degrees) for                                                                          | M1        |  |
|                    |                                                                                 |                                        | $x_1 = awrt 5.253,  x_2 = awrt 5.235$                                                                         |           |  |
|                    | $x_1 = 5.253,  x_2 = 5.235$                                                     |                                        | Ignore any subsequent iterations<br>and ignore labelling if answers are<br>clearly the second and third terms | A1        |  |
|                    |                                                                                 |                                        | crearly the second and third terms.                                                                           | (2)       |  |
|                    |                                                                                 |                                        |                                                                                                               | (9 marks) |  |

| Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scheme                                                                                                                                             | Marks     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| 2(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $f(x) = x^3 - 5x + 16 = 0 \text{ so } x^3 = 5x - 16$                                                                                               | M1        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Rightarrow x = \sqrt[3]{5x - 16}$                                                                                                                | A1 (2)    |  |  |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x_2 = \sqrt[3]{5 \times -3 - 16}$                                                                                                                 | M1        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x_2 = -3.141$ awrt<br>$x_2 = -3.165$ awrt and $x_2 = -3.169$ awrt                                                                                 | Al<br>Al  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x_3 = 5.105 \text{ and } x_4 = 5.105 \text{ and } x_5$                                                                                            | (3)       |  |  |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f(-3.175) = -0.130984375, f(-3.165) = 0.120482875                                                                                                  |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sign change (and as $f(x)$ is continuous) therefore a root $\alpha$ lies in the interval<br>$[-3, 175, -3, 165] \Rightarrow \alpha = -3.17$ (2 dp) | M1A1      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    | (2)       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    | (7 marks) |  |  |
| (a) $4x dy 10^{-1}$<br>M1: Must state $f(x) = 0$ (or imply by writing $x^3 - 5x + 16 = 0$ ) and reach $x^3 = \pm 5x \pm 16^{-1}$<br>A1: completely correct with all lines including $f(x) = 0$ stated or implied (see above), $x^3 = 5x - 16^{-1}$<br>and $x = \sqrt[3]{5x - 16}$ oe with or without $a = 5$ , $b = -16$ . Isw after a correct answer<br>If a candidate writes $x^3 = 5x - 16 \Rightarrow x = (5x - 16)^{\frac{1}{3}}$ then they can score 1 0 for a correct but incomplete solution.        |                                                                                                                                                    |           |  |  |
| Similarl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y if a candidate writes $x^3 - 5x + 16 = 0 \Rightarrow x = (5x - 16)^{\frac{7}{3}}$                                                                |           |  |  |
| Way 2:<br>M1: starts with answer, cubes and reaches $a =, b = .$<br>A1: Completely correct reaching equation and stating hence $f(x) = 0$<br>(b)<br>Ignore subscripts in this part, just mark as the first, second and third values given.<br>M1: An attempt to substitute $x_1 = -3$ into their iterative formula. E.g. Sight of $\sqrt[3]{-31}$ , or can be implied by<br>x = awrt - 3.14                                                                                                                  |                                                                                                                                                    |           |  |  |
| A1: $x_2$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = awrt - 3.141                                                                                                                                     |           |  |  |
| A1: $x_3 = awrt - 3.165$ and $x_4 = awrt - 3.169$<br>(c)<br>M1: Choose suitable interval for x, e.g. $[-3.175, -3.165]$ and at least one attempt to evaluate $f(x)$ . Evidence would be the values embedded within an expression or one value correct. A minority of candidates may choose a tighter range which should include -3.1698 (alpha to 4dp). This would be acceptable for both marks, provided the conditions for the A mark are met. Some candidates may use an adapted $f(x) = 0$ , for example |                                                                                                                                                    |           |  |  |
| $g(x) = x - \sqrt[3]{(5x-16)}$ This is also acceptable even if it is called f, but you must see it defined. For your                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                    |           |  |  |
| information $g(-3.175) = -0.004$ , $g(-3.165) = (+)0.004$ If the candidate states an f (without defining it) it must                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                    |           |  |  |
| be assumed to be $f(x) = x^3 - 5x + 16$<br>A1: needs (i) both evaluations correct to 1 sf, (either rounded or truncated)<br>(ii) sign change stated (>0, <0 acceptable as would a negative product) and<br>(iii) some form of conclusion which may be $\Rightarrow \alpha = -3.17$ or "so result shown" or qed or tick or<br>equivalent                                                                                                                                                                      |                                                                                                                                                    |           |  |  |

| Question<br>Number | Scheme                                                                                                                                                                              | Marks      |     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 11.(a)             | $\sqrt{\frac{3}{2}}$ or $\frac{\sqrt{3}}{\sqrt{2}}$ or $\sqrt{1.5}$ or $\frac{\sqrt{6}}{2}$                                                                                         | B1         |     |
|                    |                                                                                                                                                                                     |            | (1) |
| (b)                | $y = (2x^2 - 3)\tan\left(\frac{1}{2}x\right) \Longrightarrow \frac{dy}{dx} = 4x\tan\left(\frac{1}{2}x\right) + (2x^2 - 3) \times \frac{1}{2}\sec^2\left(\frac{1}{2}x\right)$        | M1A1A1     |     |
|                    | When $x = \alpha  4\alpha \tan\left(\frac{1}{2}\alpha\right) + (2\alpha^2 - 3) \times \frac{1}{2}\sec^2\left(\frac{1}{2}\alpha\right) = 0$                                          |            |     |
|                    | $8\alpha \frac{\sin\left(\frac{1}{2}\alpha\right)}{\cos\left(\frac{1}{2}\alpha\right)} + (2\alpha^2 - 3) \times \frac{1}{\cos^2\left(\frac{1}{2}\alpha\right)} = 0$                 | M1         |     |
|                    | $8\alpha\sin\left(\frac{1}{2}\alpha\right)\cos\left(\frac{1}{2}\alpha\right) + (2\alpha^2 - 3) = 0$                                                                                 |            |     |
|                    | $4\alpha\sin\alpha + (2\alpha^2 - 3) = 0$                                                                                                                                           | dM1        |     |
|                    | $2\alpha^2 - 3 + 4\alpha\sin\alpha = 0$                                                                                                                                             | A1*        |     |
|                    |                                                                                                                                                                                     |            | (6) |
| (c)                | $x_2 = \frac{3}{(2 \times 0.7 + 4\sin 0.7)}$                                                                                                                                        | M1         |     |
|                    | $x_2 = 0.7544, x_3 = 0.7062$                                                                                                                                                        | A1         |     |
|                    |                                                                                                                                                                                     |            | (2) |
| (d)                | Chooses interval [0.72825, 0.72835]                                                                                                                                                 | M1         |     |
|                    | $2 \times 0.72825^{2} - 3 + 4 \times 0.72825 \sin 0.72825 = -0.0005 < 0$<br>$2 \times 0.72835^{2} - 3 + 4 \times 0.72835 \sin 0.72835 = 0.00026 > 0 + \text{Reason}$<br>+conclusion | A1         |     |
|                    |                                                                                                                                                                                     |            | (2) |
|                    |                                                                                                                                                                                     | (11 marks) |     |

(a)

B1:  $x = \sqrt{\frac{3}{2}}$  or exact equivalent and no others **inside** the range. Ignore any solution outside the range so allow e.g.  $x = \pm \sqrt{\frac{3}{2}} \cdot \sqrt{\frac{3}{2}}$  seen unless seen in an incorrect statement e.g.  $x^2 = \sqrt{\frac{3}{2}}$ . (b)

M1: Attempts product rule on  $y = (2x^2 - 3)\tan\left(\frac{1}{2}x\right)$  or  $y = 2x^2 \tan\left(\frac{1}{2}x\right)$  if they multiply out first so look for  $\frac{d(2x^2 - 3)}{dx} \times \tan\left(\frac{1}{2}x\right) + (2x^2 - 3) \times \frac{d\tan\left(\frac{1}{2}x\right)}{dx} \text{ or } \frac{d(2x^2)}{dx} \times \tan\left(\frac{1}{2}x\right) + 2x^2 \times \frac{d\tan\left(\frac{1}{2}x\right)}{dx} \text{ or e.g.}$   $Ax \tan\left(\frac{1}{2}x\right) + Bx^2 \sec^2 \frac{1}{2}x$ 

| Question<br>Number | Scheme                                                                                                                               | Marks     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1(a)               | $x^{5} + x^{3} - 12x^{2} - 8 = 0 \Rightarrow x^{5} + x^{3} = 12x^{2} + 8$                                                            | M1        |
|                    | $x^{3}(x^{2}+1) = 12x^{2}+8 \Rightarrow x^{3} = \frac{12x^{2}+8}{(x^{2}+1)} \text{ or e.g. } x^{3} = \frac{4(3x^{2}+2)}{(x^{2}+1)}$  | A1        |
|                    | Note that going straight from $x^{5} + x^{3} = 12x^{2} + 8$ to $x^{3} = \frac{12x^{2} + 8}{(x^{2} + 1)}$                             |           |
|                    | is acceptable for the first 2 marks but the final mark should be withheld for not<br>explicitly showing the factorisation of the lhs |           |
|                    | $\Rightarrow x = \sqrt[3]{\frac{4(3x^2 + 2)}{(x^2 + 1)}} \text{ or } x = \sqrt[3]{\frac{4(2 + 3x^2)}{(x^2 + 1)}}$                    | A1*       |
|                    |                                                                                                                                      | (3)       |
| (b)                | $x_1 = \sqrt[3]{\frac{4(3 \times 2^2 + 2)}{2^2 + 1}} = 2.237$                                                                        | M1A1      |
|                    | $x_2 = 2.246,  x_3 = 2.247$                                                                                                          | A1        |
|                    |                                                                                                                                      | (3)       |
| (c)                | Interval $[2.2465, 2.2475] \Rightarrow f(2.2465) =, f(2.2475) =$                                                                     | M1        |
|                    | f(2.2465) = -0.0057, f(2.2475) = (+)0.083 +Reason + Conclusion                                                                       | A1        |
|                    |                                                                                                                                      | (2)       |
|                    |                                                                                                                                      | (8 marks) |
| Alt (a)            | $x = \sqrt[3]{\frac{4(3x^2 + 2)}{(x^2 + 1)}} \Rightarrow x^3(x^2 + 1) = 12x^2 + 8$                                                   | M1        |
|                    | $x^5 + x^3 - 12x^2 - 8 = 0$                                                                                                          | Al        |
|                    | Statement Hence $f(x) = 0$                                                                                                           | A1*       |
|                    |                                                                                                                                      | (3)       |

(a)

M1: Attempts to write equation in the form  $x^5 \pm x^3 = 12x^2 \pm 8$  or  $x^3(x^2 \pm 1) = 12x^2 \pm 8$ .

A1: Intermediate line of  $x^3 = \frac{12x^2 + 8}{(x^2 + 1)}$  seen

A1\*: cso with the factorisation of the lhs seen explicitly and a statement at the start that f(x) = 0 or  $x^5 + x^3 - 12x^2 - 8 = 0$  or e.g.  $x^3(x^2 + 1) - 4(3x^2 + 2) = 0$ 

Do not be overly concerned about the cube root encompassing the whole fraction but do not allow if it is  $\sqrt{(2)}$ 

only unambiguously the numerator that has the cube root e.g.  $\Rightarrow x = \frac{\sqrt[3]{4(3x^2+2)}}{(x^2+1)}$ 

## Beware of other algebraic methods of establishing the result in (a) – if in doubt send to review.

| Alternative for part (a):                                                                           | (b)<br>M1 |
|-----------------------------------------------------------------------------------------------------|-----------|
| M1: Cubes the printed result and multiplies up                                                      |           |
| A1: Obtains the required equation with no errors                                                    | Sub       |
| A1*: Makes a conclusion (may be minimal e.g. tick, QED, # etc.) and $x^3(x^2 + 1) = x^5 + x^3$ seen | stit      |
| explicitly in the working                                                                           | ute       |
|                                                                                                     | $s x_0$   |